|   | 
Details
   web
Records
Author Verevkin, A.; Pearlman, A.; Slysz, W.; Zhang, J.; Currie, M.; Korneev, A.; Chulkova, G.; Okunev, O.; Kouminov, P.; Smirnov, K.; Voronov, B.; Gol'tsman, G. N.; Sobolewski, R.
Title (down) Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications Type Journal Article
Year 2004 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.
Volume 51 Issue 9-10 Pages 1447-1458
Keywords NbN SSPD, SNSPD
Abstract The paper reports progress on the design and development of niobium-nitride, superconducting single-photon detectors (SSPDs) for ultrafast counting of near-infrared photons for secure quantum communications. The SSPDs operate in the quantum detection mode, based on photon-induced hotspot formation and subsequent appearance of a transient resistive barrier across an ultrathin and submicron-width superconducting stripe. The devices are fabricated from 3.5 nm thick NbN films and kept at cryogenic (liquid helium) temperatures inside a cryostat. The detector experimental quantum efficiency in the photon-counting mode reaches above 20% in the visible radiation range and up to 10% at the 1.3–1.55 μn infrared range. The dark counts are below 0.01 per second. The measured real-time counting rate is above 2 GHz and is limited by readout electronics (the intrinsic response time is below 30 ps). The SSPD jitter is below 18 ps, and the best-measured value of the noise-equivalent power (NEP) is 2 × 10−18 W/Hz1/2. at 1.3 μm. In terms of photon-counting efficiency and speed, these NbN SSPDs significantly outperform semiconductor avalanche photodiodes and photomultipliers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0950-0340 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1488
Permanent link to this record
 

 
Author Sidorova, Maria V.; Divochiy, Alexander V.; Vakhtomin, Yury B.; Smirnov, Konstantin V.
Title (down) Ultrafast superconducting single-photon detector with a reduced active area coupled to a tapered lensed single-mode fiber Type Journal Article
Year 2015 Publication J. Nanophoton. Abbreviated Journal
Volume 9 Issue 1 Pages 093051
Keywords SSPD, SNSPD
Abstract This paper presents an ultrafast niobium nitride (NbN) superconducting single-photon detector (SSPD) with an active area of 3×3  μm2 that offers better timing performance metrics than the previous SSPD with an active area of 7×7  μm2. The improved SSPD demonstrates a record timing jitter (<25  ps), an ultrashort recovery time (<2  ns), an extremely low dark count rate, and a high detection efficiency in a wide spectral range from visible part to near infrared. The record parameters were obtained due to the development of a new technique providing effective optical coupling between a detector with a reduced active area and a standard single-mode telecommunication fiber. The advantages of the new approach are experimentally confirmed by taking electro-optical measurements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1934-2608 ISBN Medium
Area Expedition Conference
Notes 10.1117/1.JNP.9.093051 Approved no
Call Number RPLAB @ sasha @ Serial 1052
Permanent link to this record
 

 
Author Goltsman, G.; Korneev, A.; Divochiy, A.; Minaeva, O.; Tarkhov, M.; Kaurova, N.; Seleznev, V.; Voronov, B.; Okunev, O.; Antipov, A.; Smirnov, K.; Vachtomin, Yu.; Milostnaya, I.; Chulkova, G.
Title (down) Ultrafast superconducting single-photon detector Type Journal Article
Year 2009 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.
Volume 56 Issue 15 Pages 1670-1680
Keywords SSPD, SNSPD
Abstract The state-of-the-art of the NbN nanowire superconducting single-photon detector technology (SSPD) is presented. The SSPDs exhibit excellent performance at 2 K temperature: 30% quantum efficiency from visible to infrared, negligible dark count rate, single-photon sensitivity up to 5.6 µm. The recent achievements in the development of GHz counting rate devices with photon-number resolving capability is presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0950-0340 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ akorneev @ Serial 607
Permanent link to this record
 

 
Author Tarkhov, M.; Claudon, J.; Poizat, J. Ph.; Korneev, A.; Divochiy, A.; Minaeva, O.; Seleznev, V.; Kaurova, N.; Voronov, B.; Semenov, A. V.; Gol'tsman, G.
Title (down) Ultrafast reset time of superconducting single photon detectors Type Journal Article
Year 2008 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 92 Issue 24 Pages 241112 (1 to 3)
Keywords SSPD, SNSPD
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 429
Permanent link to this record
 

 
Author Nebosis, R. S.; Heusinger, M. A.; Semenov, A. D.; Lang, P. T.; Schatz, W.; Steinke, R.; Renk, K. F.; Gol'tsman, G. N.; Karasik, B. S.; Gershenzon, E. M.
Title (down) Ultrafast photoresponse of an YBa2Cu3O7-δ film to far-infrared radiation pulses Type Journal Article
Year 1993 Publication Opt. Lett. Abbreviated Journal Opt. Lett.
Volume 18 Issue 2 Pages 96-97
Keywords YBCO HTS detectors
Abstract We report the observation of an ultrafast photoresponse of a high-T(c), film to far-infrared radiation pulses. The response of a sample, consisting of a current-carrying structured YBa(2)Cu(3)O(7-delta) film cooled to liquid-nitrogen temperature, was studied by use of ultrashort laser pulses from an optically pumped far-infrared laser in the frequency range from 0.7 to 7 THz. We found that the response time was limited by the time resolution, 120 ps, of our electronic registration equipment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0146-9592 ISBN Medium
Area Expedition Conference
Notes PMID:19802049 Approved no
Call Number Serial 1660
Permanent link to this record