|   | 
Details
   web
Records
Author Goltsman, G. N.; Korneev, A. A.; Finkel, M. I.; Divochiy, A. V.; Florya, I. N.; Korneeva, Y. P.; Tarkhov, M. A.; Ryabchun, S. A.; Tretyakov, I. V.; Maslennikov, S. N.; Kaurova, N. S.; Chulkova, G. M.; Voronov, B. M.
Title (up) Superconducting hot-electron bolometer as THz mixer, direct detector and IR single-photon counter Type Abstract
Year 2010 Publication 35th Int. Conf. Infrared, Millimeter, and Terahertz Waves Abbreviated Journal
Volume Issue Pages 1-1
Keywords SSPD, SNSPD, HEB
Abstract We present a new generation of superconducting single-photon detectors (SSPDs) and hot-electron superconducting sensors with record characteristic for many terahertz and optical applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2162-2027 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ sasha @ goltsman2010superconducting Serial 1028
Permanent link to this record
 

 
Author Semenov, A. D.; Hübers, Heinz-Wilhelm; Richter, H.; Birk, M.; Krocka, M.; Mair, U.; Vachtomin, Yu. B.; Finkel, M. I.; Antipov, S. V.; Voronov, B. M.; Smirnov, K. V.; Kaurova, N. S.; Drakinski, V. N.; Gol'tsman, G. N.
Title (up) Superconducting hot-electron bolometer mixer for terahertz heterodyne receivers Type Journal Article
Year 2003 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal
Volume 13 Issue 2 Pages 168-171
Keywords NbN HEB mixers
Abstract We present recent results showing the development of superconducting NbN hot-electron bolometer mixer for German receiver for astronomy at terahertz frequencies and terahertz limb sounder. The mixer is incorporated into a planar feed antenna, which has either logarithmic spiral or double-slot configuration, and backed on a silicon lens. The hybrid antenna had almost frequency independent and symmetric radiation pattern slightly broader than expected for a diffraction limited antenna. At 2.5 THz the best 2200 K double side-band receiver noise temperature was achieved across a 1 GHz intermediate frequency bandwidth centred at 1.5 GHz. For this operation regime, a receiver conversion efficiency of -17 dB was directly measured and the loss budget was evaluated. The mixer response was linear at load temperatures smaller than 400 K. Implementation of the MgO buffer layer on Si resulted in an increased 5.2 GHz gain bandwidth. The receiver was tested in the laboratory environment by measuring a methanol emission line at 2.5 THz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 343
Permanent link to this record
 

 
Author Lobanov, Y.; Shcherbatenko, M.; Semenov, A.; Kovalyuk, V.; Kahl, O.; Ferrari, S.; Korneev, A.; Ozhegov, R.; Kaurova, N.; Voronov, B. M.; Pernice, W. H. P.; Gol'tsman, G. N.
Title (up) Superconducting nanowire single photon detector for coherent detection of weak signals Type Journal Article
Year 2017 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 27 Issue 4 Pages 1-5
Keywords NbN SSPD mixer, SNSPD, nanophotonic waveguide
Abstract Traditional photon detectors are operated in the direct detection mode, counting incident photons with a known quantum efficiency. Here, we have investigated a superconducting nanowire single photon detector (SNSPD) operated as a photon counting mixer at telecommunication wavelength around 1.5 μm. This regime of operation combines excellent sensitivity of a photon counting detector with excellent spectral resolution given by the heterodyne technique. Advantageously, we have found that low local oscillator (LO) power of the order of hundreds of femtowatts to a few picowatts is sufficient for clear observation of the incident test signal with the sensitivity approaching the quantum limit. With further optimization, the required LO power could be significantly reduced, which is promising for many practical applications, such as the development of receiver matrices or recording ultralow signals at a level of less-than-one-photon per second. In addition to a traditional NbN-based SNSPD operated with normal incidence coupling, we also use detectors with a travelling wave geometry, where a NbN nanowire is placed on the top of a Si 3 N 4 nanophotonic waveguide. This approach is fully scalable and a large number of devices could be integrated on a single chip.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1206
Permanent link to this record
 

 
Author Manova, N. N.; Korneeva, Yu. P.; Korneev, A. A.; Slysz, W.; Voronov, B. M.; Gol'tsman, G. N.
Title (up) Superconducting NbN single-photon detector integrated with quarter-wave resonator Type Journal Article
Year 2011 Publication Tech. Phys. Lett. Abbreviated Journal Tech. Phys. Lett.
Volume 37 Issue 5 Pages 469-471
Keywords SSPD, SNSPD
Abstract The spectral dependence of the quantum efficiency of superconducting NbN single-photon detectors integrated with quarter-wave resonators based on Si3N4, SiO2, and SiO layers has been studied.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 664
Permanent link to this record
 

 
Author Voronov, B. M.; Gershenzon, E. M.; Gol'tsman, G. N.; Gubkina, T. O.; Semash, V. D.
Title (up) Superconductive properties of ultrathin NbN films on different substrates Type Journal Article
Year 1994 Publication Sverkhprovodimost': Fizika, Khimiya, Tekhnika Abbreviated Journal Sverkhprovodimost': Fizika, Khimiya, Tekhnika
Volume 7 Issue 6 Pages 1097-1102
Keywords NbN films
Abstract A study was made on dependence of surface resistance, critical temperature and width of superconducting transition on application temperature and thickness of NbN films, which varied within the range of 3-10 nm. Plates of sapphire, fused and monocrystalline quartz, MgO, as well as Si and silicon oxide were used as substrates. NbN films with 160 μθ·cm specific resistance and 16.5 K (Tc) critical temperature were obtained on sapphire substrates. Intensive growth of ΔTc was noted for films, applied on fused quartz, with increase of precipitation temperature. This is explained by occurrence of high tensile stresses in NbN films, caused by sufficient difference of thermal coefficients of expansion of NbN and quartz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0131-5366 ISBN Medium
Area Expedition Conference
Notes Сверхпроводниковые свойства ультратонких пленок NbN на различных подложках Approved no
Call Number Serial 1631
Permanent link to this record