|   | 
Details
   web
Records
Author Vakhtomin, Y. B.; Finkel, M. I.; Antipov, S. V.; Smirnov, K. V.; Kaurova, N. S.; Drakinskii, V. N.; Voronov, B. M.; Gol’tsman, G. N.
Title (up) The gain bandwidth of mixers based on the electron heating effect in an ultrathin NbN film on a Si substrate with a buffer MgO layer Type Journal Article
Year 2003 Publication J. of communications technol. & electronics Abbreviated Journal J. of communications technol. & electronics
Volume 48 Issue 6 Pages 671-675
Keywords NbN HEB mixers
Abstract Measurements of the intermediate frequency band 900 GHz of mixers based on the electron heating effect (EHE) in 2-nm- and 3.5-nm-thick superconducting NbN films sputtered on MgO and Si substrates with buffer MgO layers are presented. A 2-nm-thick superconducting NbN film with a critical temperature of 9.2 K has been obtained for the first time using a buffer MgO layer.
Address
Corporate Author Thesis
Publisher MAIK Nauka/Interperiodica, Birmingham, AL Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1064-2269 ISBN Medium
Area Expedition Conference
Notes https://elibrary.ru/item.asp?id=17302119 (Полоса преобразования смесителей на эффекте разогрева электронов в ультратонких пленках NbN на подложках из Si с подслоем MgO) Approved no
Call Number Vakhtomin2003 Serial 1522
Permanent link to this record
 

 
Author Gol’tsman, G. N.
Title (up) The “Millimetron” project, a future space telescope mission Type Abstract
Year 2007 Publication Proc. 18th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 18th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 255
Keywords Millimetron space observatory, VLBI
Abstract The goal of the Millimetron project is to develop a space observatory operating in the millimeter, sub-millimeter and infrared wavelength ranges using a 12-m actively cooled telescope in a single-dish mode and as an interferometer with the space-ground and space-space baselines (the later after the launch of the second identical space telescope). The Millimetron’s main reflector and other optics will be cooled down to 4K thus enabling astronomical observations with super high sensitivity in MM and subMM (down to nanoJansky level). Heterodyne observations in an interferometer mode at frequencies 0.1-1 THz will provide super high angular resolution. The main instruments, planned to be installed are wide-range imaging arrays, radiometers with spectrometers and polarimeters, VLBI heterodyne receivers, and Mikelson type interferometer devices. Wide-range MM and subMM imaging arrays and spectrometers will be based on a superconducting hot electron direct detectors with Andreev mirrors operating at 0.1 K. Such detectors are the best candidates to reach the noise equivalent power level of 10 -19 -10 -20 W/√Hz. Heterodyne receivers will be both SIS based superconducting integrated receiver with flux-flow oscillator as LO (0.1-0.9 THz range) and HEB based receivers using multiplied Gunn oscillator as LO for 1-2 THz range and quantum cascade lasers as LO for 2-5 THz range. For observations in middle IR region there will be installed large arrays of superconducting single photon detectors, providing imaging with very high dynamic range and ultimate sensitivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1422
Permanent link to this record
 

 
Author Sergeev, A. V.; Aksaev, E. E.; Gogidze, I. G.; Gol’tsman, G. N.; Semenov, A. D.; Gershenzon, E. M.
Title (up) Thermal boundary resistance at YBaCuO film-substrate interface Type Conference Article
Year 1993 Publication Phonon Scattering in Condensed Matter VII. Springer Series in Solid-State Sciences Abbreviated Journal Phonon Scattering in Condensed Matter VII. Springer Series in Solid-State Sciences
Volume 112 Issue Pages 405-406
Keywords YBCO films
Abstract The nanosecond voltage response of YBaCuo films on Al2O3, MgO and ZrO2 substrates to electromagnetic radiation of millimeter and visible ranges has been investigated. The analysis of experimental conditions for Al2O3 and MgO substrates shows that the resistance change is monitored by the Kapitza boundary shift of temperature during the temporal interval ~ 100 ns limited by the time of phonon return from a substrate into a film. The observed exponential voltage decay is described by the phonon escape time which is proportional to the film thickness and is weakly temperature dependent.
Address
Corporate Author Thesis
Publisher Place of Publication Editor Meissner, M.; Pohl, R. O.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Seventh International Conference, Cornell University, Ithaca, New York, August 3-7, 1992
Notes Approved no
Call Number Serial 1665
Permanent link to this record
 

 
Author Zhang, J.; Słysz, W.; Pearlman, A.; Verevkin, A.; Sobolewski, R.; Okunev, O.; Chulkova, G.; Gol’tsman, G. N.
Title (up) Time delay of resistive-state formation in superconducting stripes excited by single optical photons Type Journal Article
Year 2003 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 67 Issue 13 Pages 132508 (1 to 4)
Keywords NbN SSPD, SNSPD
Abstract We have observed a 65(±5)-ps time delay in the onset of a resistive-state formation in 10-nm-thick, 130-nm-wide NbN superconducting stripes exposed to single photons. The delay in the photoresponse decreased to zero when the stripe was irradiated by multi-photon (classical) optical pulses. Our NbN structures were kept at 4.2 K, well below the material’s critical temperature, and were illuminated by 100-fs-wide optical pulses. The time-delay phenomenon has been explained within the framework of a model based on photon-induced generation of a hotspot in the superconducting stripe and subsequent, supercurrent-assisted, resistive-state formation across the entire stripe cross section. The measured time delays in both the single-photon and two-photon detection regimes agree well with theoretical predictions of the resistive-state dynamics in one-dimensional superconducting stripes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1519
Permanent link to this record
 

 
Author Zhang, J.; Verevkin, A.; Slysz, W.; Chulkova, G.; Korneev, A.; Lipatov, A.; Okunev, O.; Gol’tsman, G. N.; Sobolewski, Roman
Title (up) Time-resolved characterization of NbN superconducting single-photon optical detectors Type Conference Article
Year 2017 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 10313 Issue Pages 103130F (1 to 3)
Keywords NbN SSPD, SNSPD
Abstract NbN superconducting single-photon detectors (SSPDs) are very promising devices for their picosecond response time, high intrinsic quantum efficiency, and high signal-to-noise ratio within the radiation wavelength from ultraviolet to near infrared (0.4 gm to 3 gm) [1-3]. The single photon counting property of NbN SSPDs have been investigated thoroughly and a model of hotspot formation has been introduced to explain the physics of the photon- counting mechanism [4-6]. At high incident flux density (many-photon pulses), there are, of course, a large number of hotspots simultaneously formed in the superconducting stripe. If these hotspots overlap with each other across the width w of the stripe, a resistive barrier is formed instantly and a voltage signal can be generated. We assume here that the stripe thickness d is less than the electron diffusion length, so the hotspot region can be considered uniform. On the other hand, when the photon flux is so low that on average only one hotspot is formed across w at a given time, the formation of the resistive barrier will be realized only when the supercurrent at sidewalks surpasses the critical current (jr) of the superconducting stripe [1]. In the latter situation, the formation of the resistive barrier is associated with the phase-slip center (PSC) development. The effect of PSCs on the suppression of superconductivity in nanowires has been discussed very recently [8, 9] and is the subject of great interest.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Armitage, J. C.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Opto-Canada: SPIE Regional Meeting on Optoelectronics, Photonics, and Imaging, 2002, Ottawa, Ontario, Canada
Notes Downloaded from http://www2.ece.rochester.edu/projects/ufqp/PDF/2002/213NbNTimeOPTO_b.pdf This artcle was published in 2017 with only first author indicated (Zhang, J.). There were 8 more authors! Approved no
Call Number Serial 1750
Permanent link to this record