toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Perseguers, S.; Lewenstein, M.; Acín, A.; Cirac, J. I. openurl 
  Title (up) Quantum random networks Type Journal Article
  Year 2010 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 6 Issue 7 Pages 539-543  
  Keywords fromIPMRAS  
  Abstract Quantum mechanics offers new possibilities to process and transmit information. In recent years, algorithms and cryptographic protocols exploiting the superposition principle and the existence of entangled states have been designed. They should allow us to realize communication and computational tasks that outperform any classical strategy. Here we show that quantum mechanics also provides fresh perspectives in the field of random networks. Already the simplest model of a classical random graph changes markedly when extended to the quantum case, where we obtain a distinct behaviour of the critical probabilities at which different subgraphs appear. In particular, in a network of N nodes, any quantum subgraph can be generated by local operations and classical communication if the entanglement between pairs of nodes scales as N-2. This result also opens up new vistas in the domain of quantum networks and their applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 804  
Permanent link to this record
 

 
Author Ma, Xiao-Song; Dakic, Borivoje; Naylor, William; Zeilinger, Anton; Walther, Philip openurl 
  Title (up) Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems Type Journal Article
  Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 7 Issue 5 Pages 399-405  
  Keywords fromIPMRAS  
  Abstract Quantum simulators are controllable quantum systems that can reproduce the dynamics of the system of interest in situations that are not amenable to classical computers. Recent developments in quantum technology enable the precise control of individual quantum particles as required for studying complex quantum systems. In particular, quantum simulators capable of simulating frustrated Heisenberg spin systems provide platforms for understanding exotic matter such as high-temperature superconductors. Here we report the analogue quantum simulation of the ground-state wavefunction to probe arbitrary Heisenberg-type interactions among four spin-1/2 particles. Depending on the interaction strength, frustration within the system emerges such that the ground state evolves from a localized to a resonating-valence-bond state. This spin-1/2 tetramer is created using the polarization states of four photons. The single-particle addressability and tunable measurement-induced interactions provide us with insights into entanglement dynamics among individual particles. We directly extract ground-state energies and pairwise quantum correlations to observe the monogamy of entanglement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 842  
Permanent link to this record
 

 
Author Zakka-Bajjani, Eva; Nguyen, François; Lee, Minhyea; Vale, Leila R.; Simmonds, Raymond W.; Aumentado, José openurl 
  Title (up) Quantum superposition of a single microwave photon in two different 'colour' states Type Journal Article
  Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 7 Issue 8 Pages 599-603  
  Keywords fromIPMRAS  
  Abstract Fully controlled coherent coupling of arbitrary harmonic oscillators is an important tool for processing quantum information. Coupling between quantum harmonic oscillators has previously been demonstrated in several physical systems using a two-level system as a mediating element. Direct interaction at the quantum level has only recently been realized by means of resonant coupling between trapped ions. Here we implement a tunable direct coupling between the microwave harmonics of a superconducting resonator by means of parametric frequency conversion. We accomplish this by coupling the mode currents of two harmonics through a superconducting quantum interference device (SQUID) and modulating its flux at the difference (~7GHz) of the harmonic frequencies. We deterministically prepare a single-photon Fock state and coherently manipulate it between multiple modes, effectively controlling it in a superposition of two different 'colours'. This parametric interaction can be described as a beamsplitter-like operation that couples different frequency modes. As such, it could be used to implement linear optical quantum computing protocols on-chip.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 822  
Permanent link to this record
 

 
Author Baumert, Thomas openurl 
  Title (up) Quantum technology: Wave packets get a kick Type Journal Article
  Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 7 Issue 5 Pages 373-374  
  Keywords fromIPMRAS  
  Abstract Intense femtosecond pulses of infrared light can manipulate molecules. It is now shown that such control even extends to making different molecular eigenstates interfere with each other in a way never considered before -- a potential tool for optically engineered chemical reactions and for ultrafast information encoding and manipulation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 830  
Permanent link to this record
 

 
Author Hanneke, D.; Home, J. P.; Jost, J. D.; Amini, J. M.; Leibfried, D.; Wineland, D. J. openurl 
  Title (up) Realization of a programmable two-qubit quantum processor Type Journal Article
  Year 2010 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 6 Issue 1 Pages 13-16  
  Keywords fromIPMRAS  
  Abstract The universal quantum computer is a device capable of simulating any physical system and represents a major goal for the field of quantum information science. In the context of quantum information, `universal' refers to the ability to carry out arbitrary unitary transformations in the system's computational space. Combining arbitrary single-quantum-bit (qubit) gates with an entangling two-qubit gate provides a set of gates capable of achieving universal control of any number of qubits, provided that these gates can be carried out repeatedly and between arbitrary pairs of qubits. Although gate sets have been demonstrated in several technologies, they have so far been tailored towards specific tasks, forming a small subset of all unitary operators. Here we demonstrate a quantum processor that can be programmed with 15 classical inputs to realize arbitrary unitary transformations on two qubits, which are stored in trapped atomic ions. Using quantum state and process tomography, we characterize the fidelity of our implementation for 160 randomly chosen operations. This universal control is equivalent to simulating any pairwise interaction between spin-1/2 systems. A programmable multiqubit register could form a core component of a large-scale quantum processor, and the methods used here are suitable for such a device.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 801  
Permanent link to this record
 

 
Author Hadfield, Robert H. doi  openurl
  Title (up) Single-photon detectors for optical quantum information applications Type Journal Article
  Year 2009 Publication Nature Photonics Abbreviated Journal Nature Photonics  
  Volume 3 Issue Pages 696-705  
  Keywords SPD  
  Abstract The past decade has seen a dramatic increase in interest in new single-photon detector technologies. A major cause of this trend has undoubtedly been the push towards optical quantum information applications such as quantum key distribution. These new applications place extreme demands on detector performance that go beyond the capabilities of established single-photon detectors. There has been considerable effort to improve conventional photon-counting detectors and to transform new device concepts into workable technologies for optical quantum information applications. This Review aims to highlight the significant recent progress made in improving single-photon detector technologies, and the impact that these developments will have on quantum optics and quantum information science.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 678  
Permanent link to this record
 

 
Author Haviland, David openurl 
  Title (up) Superconducting circuits: Quantum phase slips Type Journal Article
  Year 2010 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 6 Issue Pages 565–566  
  Keywords fromIPMRAS  
  Abstract Coulomb interactions can cause a rapid change in the phase of the wavefunction along a very narrow superconducting system. Such a phase slip at the quantum level is now measured in a chain of Josephson junctions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 807  
Permanent link to this record
 

 
Author Billangeon, P.-M.; Nakamura, Y. openurl 
  Title (up) Superconducting devices: Quantum cups and balls Type Journal Article
  Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 7 Issue 8 Pages 594-595  
  Keywords fromIPMRAS  
  Abstract A single microwave photon in a superposition of two states of different frequency is now demonstrated using a superconducting quantum interference device to mediate the coupling between two harmonics of a resonator. Such quantum circuits bring closer the possibility of controlling photon-photon interactions at the single-photon level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 820  
Permanent link to this record
 

 
Author Gabay, Marc; Triscone, Jean-Marc openurl 
  Title (up) Superconductors: Terahertz superconducting switch Type Journal Article
  Year 2011 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume 5 Issue 8 Pages 447-449  
  Keywords fromIPMRAS  
  Abstract The use of terahertz pulses to 'gate' interlayer charge transport in a superconductor could lead to a variety of new and interesting applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 777  
Permanent link to this record
 

 
Author Mineev, Vladimir P. openurl 
  Title (up) Superfluid helium: Order in disorder Type Journal Article
  Year 2012 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 8 Issue Pages 253–254  
  Keywords fromIPMRAS  
  Abstract Confining liquid 3He in porous silica aerogel prepared with strong anisotropy stabilizes a state of axial superfluidity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 810  
Permanent link to this record
 

 
Author Paiella, Roberto openurl 
  Title (up) Terahertz quantum cascade lasers: Going ultrafast Type Journal Article
  Year 2011 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume 5 Issue Pages 253–255  
  Keywords fromIPMRAS  
  Abstract A new asynchronous coherent optical sampling method allows for the direct visualization of actively mode-locked quantum cascade laser pulses at terahertz wavelengths.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 774  
Permanent link to this record
 

 
Author Williams, Benjamin S. openurl 
  Title (up) Terahertz quantum-cascade lasers Type Journal Article
  Year 2007 Publication Nature Photonics Abbreviated Journal  
  Volume 1 Issue Pages 517-525  
  Keywords QCL review  
  Abstract Six years after their birth, terahertz quantum-cascade lasers can now deliver milliwatts or more of continuous-wave coherent radiation throughout the terahertz range — the spectral regime between millimetre and infrared wavelengths, which has long resisted development. This paper reviews the state-of-the-art and future prospects for these lasers, including efforts to increase their operating temperatures, deliver higher output powers and emit longer wavelengths.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 632  
Permanent link to this record
 

 
Author Akalin, Tahsin openurl 
  Title (up) Terahertz sources: Powerful photomixers Type Journal Article
  Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume 6 Issue 2 Pages 81  
  Keywords fromIPMRAS  
  Abstract An efficient continuous-wave source of terahertz radiation that combines the outputs from two near-infrared semiconductor lasers in a novel photomixer looks set to benefit applications in spectroscopy and imaging.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 787  
Permanent link to this record
 

 
Author Vishveshwara, Smitha openurl 
  Title (up) Topological qubits: A bit of both Type Journal Article
  Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 7 Issue Pages 450–451  
  Keywords fromIPMRAS  
  Abstract 'Standard' qubits have been implemented in diverse physical systems. Now, so-called topological qubits are coming into the limelight, and could potentially be used for decoherence-free quantum computing. Coupling these two types of qubit might enable devices that exploit the virtues of both.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 825  
Permanent link to this record
 

 
Author Pris, Andrew D.; Utturkar, Yogen; Surman, Cheryl; Morris, William G.; Vert, Alexey; Zalyubovskiy, Sergiy; Deng, Tao; Ghiradella, Helen T.; Potyrailo, Radislav A. openurl 
  Title (up) Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures Type Journal Article
  Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume 6 Issue 3 Pages 195-200  
  Keywords fromIPMRAS  
  Abstract Existing infrared detectors rely on complex microfabrication and thermal management methods. Here, we report an attractive platform of low-thermal-mass resonators inspired by the architectures of iridescent Morpho butterfly scales. In these resonators, the optical cavity is modulated by its thermal expansion and refractive index change, resulting in `wavelength conversion' of mid-wave infrared (3-8 µm) radiation into visible iridescence changes. By doping Morpho butterfly scales with single-walled carbon nanotubes, we achieved mid-wave infrared detection with 18-62 mK noise-equivalent temperature difference and 35-40 Hz heat-sink-free response speed. The nanoscale pitch and the extremely small thermal mass of individual `pixels' promise significant improvements over existing detectors. Computational analysis explains the origin of this thermal response and guides future conceptually new bio-inspired thermal imaging sensor designs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 785  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: