|   | 
Details
   web
Records
Author Iomdina, E. N.; Goltsman, G. N.; Seliverstov, S. V.; Sianosyan, A. A.; Teplyakova, K. O.; Rusova, A. A.
Title (down) Study of transmittance and reflectance spectra of the cornea and the sclera in the THz frequency range Type Journal Article
Year 2016 Publication J. Biomed. Opt. Abbreviated Journal J. Biomed. Opt.
Volume 21 Issue 9 Pages 97002 (1 to 5)
Keywords BWO, IMPATT diode, Schottky diode, medicine, animals, cornea, physiology, humans, rabbits, sclera diagnostic imaging, physiology
Abstract An adequate water balance (hydration extent) is one of the basic factors of normal eye function, including its external shells: the cornea and the sclera. Adequate control of corneal and scleral hydration is very important for early diagnosis of a variety of eye diseases, stating indications for and contraindications against keratorefractive surgeries and the choice of contact lens correction solutions. THz systems of creating images in reflected beams are likely to become ideal instruments of noninvasive control of corneal and scleral hydration degrees. This paper reports on the results of a study involving transmittance and reflectance spectra for the cornea and the sclera of rabbit and human eyes, as well as those of the rabbit eye, in the frequency range of 0.13 to 0.32 THz. The dependence of the reflectance coefficient of these tissues on water mass percentage content was determined. The experiments were performed on three corneas, three rabbit scleras, two rabbit eyes, and three human scleras. The preliminary results demonstrate that the proposed technique, based on the use of a continuous THz radiation, may be utilized to create a device for noninvasive control of corneal and scleral hydration, which has clear potential of broad practical application.
Address Moscow State Pedagogical University, Department of Physics, 29 Malaya Pirogovskaya Street, Moscow 119435, Russia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1083-3668 ISBN Medium
Area Expedition Conference
Notes PMID:27626901 Approved no
Call Number Serial 1335
Permanent link to this record
 

 
Author Shurakov, A.; Mikhailov, D.; Belikov, I.; Kaurova, N.; Zilberley, T.; Prikhodko, A.; Voronov, B.; Vasil’evskii, I.; Goltsman, G.
Title (down) Planar Schottky diode with a Γ-shaped anode suspended bridge Type Conference Article
Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1695 Issue Pages 012154
Keywords Schottky diode, GaAs, InP substrate
Abstract In this paper we report on the fabrication of a planar Schottky diode utilizing a Г-shaped anode suspended bridge. The bridge maintains transition between the top and bottom level planes of a 1.4 µm thick GaAs mesa. To implement the profile of a suspended bridge and inward tilt of a mesa wall adjacent to it, we make use of an anisotropic etching of gallium arsenide. The geometry proposed enables the fabrication of a diode with mesa of an arbitrary thickness to mitigate AC losses in the diode layered structure at terahertz frequencies of interest. For frequencies beyond 1 THz, it is also beneficial to use the geometry for the implementation of n-GaAs/n-InGaAs heterojunction Schottky diodes grown on InP substrate.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1152
Permanent link to this record
 

 
Author Archer, J. W.
Title (down) Multiple mixer, cryogenic receiver for 200-350 GHz Type Journal Article
Year 1983 Publication Rev. Sci. Instrum. Abbreviated Journal Rev. Sci. Instrum.
Volume 54 Issue 10 Pages 1371-1376
Keywords Schottky, mixer, noise temperature
Abstract This paper describes a new 200–350-GHz dual polarization heterodyne radiometer receiver for radio astronomy applications. The receiver incorporates four pairs of cryogenically cooled Schottky-barrier diode single-ended mixers, each pair covering a 30–40-GHz subband of the full operating band. Each mixer, with its IF amplifier, is mounted in an individual cryogenic subdewar comprising a separate vcuum chamber and a cold stage, which may be readily thermally connected to or disconnected from the main refrigerator by a novel mechanical heat switch. A dual polarization LO diplexer is mounted on a rotary table above the subdewars. For band selection, the two diplexer rf output ports may be positioned over any of the four pairs of subdewars. The SSB receiver noise temperatues achieved are less than 500 K between 200 and 240 GHz, less than 800 K between 245 and 275 GHz and 1500 K at 345 GHz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 589
Permanent link to this record
 

 
Author Fedorov, G.; Gayduchenko, I.; Titova, N.; Moskotin, M.; Obraztsova, E.; Rybin, M.; Goltsman, G.
Title (down) Graphene-based lateral Schottky diodes for detecting terahertz radiation Type Conference Article
Year 2018 Publication Proc. Optical Sensing and Detection V Abbreviated Journal Proc. Optical Sensing and Detection V
Volume 10680 Issue Pages 30-39
Keywords graphene, terahertz radiation, detectors, Schottky diodes, carbon nanotubes, plasma waves
Abstract Demand for efficient terahertz radiation detectors resulted in intensive study of the carbon nanostructures as possible solution for that problem. In this work we investigate the response to sub-terahertz radiation of graphene field effect transistors of two configurations. The devices of the first type are based on single layer CVD graphene with asymmetric source and drain (vanadium and gold) contacts and operate as lateral Schottky diodes (LSD). The devices of the second type are made in so-called Dyakonov-Shur configuration in which the radiation is coupled through a spiral antenna to source and top electrodes. We show that at 300 K the LSD detector exhibit the room-temperature responsivity from R = 15 V/W at f= 129 GHz to R = 3 V/W at f = 450 GHz. The DS detector responsivity is markedly lower (2 V/W) and practically frequency independent in the investigated range. We find that at low temperatures (77K) the graphene lateral Schottky diodes responsivity rises with the increasing frequency of the incident sub-THz radiation. We interpret this result as a manifestation of a plasmonic effect in the devices with the relatively long plasmonic wavelengths. The obtained data allows for determination of the most promising directions of development of the technology of nanocarbon structures for the detection of THz radiation.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor Berghmans, F.; Mignani, A.G.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number 10.1117/12.2307020 Serial 1306
Permanent link to this record
 

 
Author Fetterman, H. R.; Tannenwald, P. E.; Clifton, B. J.; Parker, C. D.; Fitzgerald, W. D.; Erickson, N. R.
Title (down) Far-ir heterodyne radiometric measurements with quasioptical Schottky diode mixers Type Journal Article
Year 1978 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 33 Issue 2 Pages 151-154
Keywords Schottky
Abstract Frequency countings close to a phase locked zone in an electronic receiver show a 1/f power spectral density. The noise scaling versus the frequency deviation and the open loop gain are found from Adler's model of the phase locked loop. This fully agrees with experiments performed at 5 MHz on a receiver with a Schottky diode mixer and a low pass filter. The 1/f amplitude and frequency noise due to the whole set of (sub)harmonics is explained from a nonlinear mapping, with a coupling coefficient related to the structure of prime numbers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 587
Permanent link to this record