|   | 
Details
   web
Records
Author Golikov, A.; Kovalyuk, V.; An, P.; Zubkova, E.; Ferrari, S.; Pernice, W.; Korneev, A.; Goltsman, G.
Title (down) Silicon nitride nanophotonic circuit for on-chip spontaneous four-wave mixing Type Conference Article
Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1124 Issue Pages 051051
Keywords O-ring resonator
Abstract Here we present an integrated nanophotonic circuit for on-chip spontaneous four-wave mixing. The fabricated device includes an O-ring resonator, a Bragg noch-filter as well as a nine-channel arrayed waveguide gratings (AWG) operated in the C-band wavelength range (1550 nm). The measured optical losses of the device (-6.8 dB) as well as a high Q-factor (> 1.2×105) shows a good potential for realizing the spontaneous four-wave mixing on the silicon nitride chip.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1193
Permanent link to this record
 

 
Author Prokhodtsov, A.; Kovalyuk, V.; An, P.; Golikov, A.; Shakhovoy, R.; Sharoglazova, V.; Udaltsov, A.; Kurochkin, Y.; Goltsman, G.
Title (down) Silicon nitride Mach-Zehnder interferometer for on-chip quantum random number generation Type Conference Article
Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1695 Issue Pages 012118
Keywords Mach-Zehnder interferometer, MZI
Abstract In this work, we experimentally studied silicon nitride Mach-Zehnder interferometer (MZI) with two directional couplers and 400 ps optical delay line for telecom wavelength 1550 nm. We achieved the extinction ratio in a range of 0.76-13.86 dB and system coupling losses of 28-44 dB, depending on the parameters of directional couplers. The developed interferometer is promising for the use in a compact random number generator for the needs of a fully integrated quantum cryptography system, where compact design, as well as high generation speed, are needed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1178
Permanent link to this record
 

 
Author Kuzin, Aleksei; Elmanov, Ilia; Kovalyuk, Vadim; An, Pavel; Goltsman, Gregory
Title (down) Silicon nitride focusing grating coupler for input and output light of NV-centers Type Conference Article
Year 2020 Publication Proc. 32-nd EMSS Abbreviated Journal Proc. 32-nd EMSS
Volume Issue Pages 349-353
Keywords NV-centers, focusing grating coupler
Abstract Here we presented the numerical results for the calculation of focusing grating coupler efficiency in the visible wavelength range. Using the finite element method, the optimal geometric parameters, including filling factor and grating period for a central wavelength of 637 nm, were found. Obtained results allow to input/output single-photon radiation from NV-centers, and can be used for research and development of a scalable on-chip quantum optical computing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2724-0029 ISBN 978-88-85741-44-7 Medium
Area Expedition Conference 32nd European Modeling & Simulation Symposium
Notes Approved no
Call Number Serial 1841
Permanent link to this record
 

 
Author Tretyakov, I.; Svyatodukh, S.; Chumakova, A.; Perepelitsa, A.; Kaurova, N.; Shurakov, A.; Zilberley, T.; Ryabchun, S.; Smirnov, M.; Ovchinnikov, O.; Goltsman, G.
Title (down) Room temperature silicon detector for IR range coated with Ag2S quantum dots Type Conference Article
Year 2019 Publication IRMMW-THz Abbreviated Journal
Volume Issue Pages
Keywords Ag2S quantum dots
Abstract A silicon has been the chief technological semiconducting material of modern microelectronics and has had a strong influence on all aspects of society. Applications of Si-based optoelectronic devices are limited to the visible and near infrared ranges. The expansion of the Si absorption to shorter wavelengths of the infrared range is of considerable interest to optoelectronic applications. By creating impurity states in Si it is possible to cause sub-band gap photon absorption. Here, we present an elegant and effective technology of extending the photoresponse of towards the IR range. Our approach is based on the use of Ag 2 S quantum dots (QDs) planted on the surface of Si. The specific sensitivity of the Ag 2 S/Si heterostructure is 10 11 cm√HzW -1 at 1.55μm. Our findings open a path towards the future study and development of Si detectors for technological applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2162-2035 ISBN 978-1-5386-8285-2 Medium
Area Expedition Conference
Notes Approved no
Call Number 8874267 Serial 1286
Permanent link to this record
 

 
Author Fedorov, G. E.; Gaiduchenko, I. A.; Golikov, A. D.; Rybin, M. G.; Obraztsova, E. D.; Voronov, B. M.; Coquillat, D.; Diakonova, N.; Knap, W.; Goltsman, G. N.; Samartsev, V. V.; Vinogradov, E. A.; Naumov, A. V.; Karimullin, K. R.
Title (down) Response of graphene based gated nanodevices exposed to THz radiation Type Conference Article
Year 2015 Publication EPJ Web of Conferences Abbreviated Journal EPJ Web of Conferences
Volume 103 Issue Pages 10003 (1 to 2)
Keywords graphene field-effect transistor, FET
Abstract In this work we report on the response of asymmetric graphene based devices to subterahertz and terahertz radiation. Our devices are made in a configuration of a field-effect transistor with conduction channel between the source and drain electrodes formed with a CVD-grown graphene. The radiation is coupled through a spiral antenna to source and top gate electrodes. Room temperature responsivity of our devices is close to the values that are attractive for commercial applications. Further optimization of the device configuration may result in appearance of novel terahertz radiation detectors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1350
Permanent link to this record