|   | 
Details
   web
Records
Author Ikuta, Rikizo; Kusaka, Yoshiaki; Kitano, suyoshi; Kato, Hiroshi; Yamamoto, Takashi; Koashi, Masato; Imoto, Nobuyuki
Title (down) Wide-band quantum interface for visible-totelecommunication wavelength conversion Type Journal Article
Year 2011 Publication Nature Communications Abbreviated Journal Nat. Comm.
Volume 2 Issue Pages 5
Keywords fromIPMRAS
Abstract Although near-infrared photons in telecommunication bands are required for long-distance quantum communication, various quantum information tasks have been performed by using visible photons for the past two decades. Recently, such visible photons from diverse media including atomic quantum memories have also been studied. Optical frequency down-conversion from visible to telecommunication bands while keeping the quantum states is thus required for bridging such wavelength gaps. Here we report demonstration of a quantum interface of frequency down-conversion from visible to telecommunication bands by using a nonlinear crystal, which has a potential to work over wide bandwidths, leading to a high-speed interface of frequency conversion. We achieved the conversion of a picosecond visible photon at 780 nm to a 1,522-nm photon, and observed that the conversion process retained entanglement between the down-converted photon and another photon.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 764
Permanent link to this record
 

 
Author Sprengers, J. P.; Gaggero, A.; Sahin, D.; Jahanmirinejad, S.; Frucci, G.; Mattioli, F.; Leoni, R.; Beetz, J.; Lermer, M.; Kamp, M.; Höfling, S.; Sanjines, R.; Fiore A.
Title (down) Waveguide superconducting single-photon detectors for integrated quantum photonic circuits Type Journal Article
Year 2011 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.
Volume 99 Issue 18 Pages 181110(1-3)
Keywords optical waveguides, waveguide SSPD
Abstract The monolithic integration of single-photon sources, passive optical circuits, and single-photon detectors enables complex and scalable quantum photonic integrated circuits, for application in linear-optics quantum computing and quantum communications. Here, we demonstrate a key component of such a circuit, a waveguide single-photon detector. Our detectors, based on superconducting nanowires on GaAs ridge waveguides, provide high efficiency (~0%) at telecom wavelengths, high timing accuracy (~0 ps), and response time in the ns range and are fully compatible with the integration of single-photon sources, passive networks, and modulators.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 847
Permanent link to this record
 

 
Author Sprengers, J.P.; Gaggero, A.; Sahin, D.; Nejad, S. Jahanmiri; Mattioli, F.; Leoni, R.; Beetz, J.; Lermer, M.; Kamp, M.; Höfling, S.; Sanjines, R.; Fiore, A.
Title (down) Waveguide single-photon detectors for integrated quantum photonic circuits Type Journal Article
Year 2011 Publication arXiv Abbreviated Journal arXiv
Volume Issue Pages 11
Keywords SPD
Abstract he generation, manipulation and detection of quantum bits (qubits) encoded on single photons is at the heart of quantum communication and optical quantum information processing. The combination of single-photon sources, passive optical circuits and single-photon detectors enables quantum repeaters and qubit amplifiers, and also forms the basis of all-optical quantum gates and of linear-optics quantum computing. However, the monolithic integration of sources, waveguides and detectors on the same chip, as needed for scaling to meaningful number of qubits, is very challenging, and previous work on quantum photonic circuits has used external sources and detectors. Here we propose an approach to a fully-integrated quantum photonic circuit on a semiconductor chip, and demonstrate a key component of such circuit, a waveguide single-photon detector. Our detectors, based on superconducting nanowires on GaAs ridge waveguides, provide high efficiency (20%) at telecom wavelengths, high timing accuracy (60 ps), response time in the ns range, and are fully compatible with the integration of single-photon sources, passive networks and modulators.
Address
Corporate Author Thesis
Publisher Place of Publication arXiv:1108.5107 Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 668
Permanent link to this record
 

 
Author Sprengers, J.P.; Gaggero, A.; Sahin, D.; Nejad, S. Jahanmiri; Mattioli, F.; Leoni, R.; Beetz, J.; Lermer, M.; Kamp, M.; Höfling, S.; Sanjines, R.; Fiore A.
Title (down) Waveguide single-photon detectors for integrated quantum photonic circuits Type Conference Article
Year 2011 Publication arXiv Abbreviated Journal arXiv
Volume 1108.5107 Issue Pages 1-11
Keywords optical waveguides, waveguide SSPD
Abstract The generation, manipulation and detection of quantum bits (qubits) encoded on single photons is at the heart of quantum communication and optical quantum information processing. The combination of single-photon sources, passive optical circuits and single-photon detectors enables quantum repeaters and qubit amplifiers, and also forms the basis of all-optical quantum gates and of linear-optics quantum computing. However, the monolithic integration of sources, waveguides and detectors on the same chip, as needed for scaling to meaningful number of qubits, is very challenging, and previous work on quantum photonic circuits has used external sources and detectors. Here we propose an approach to a fully-integrated quantum photonic circuit on a semiconductor chip, and demonstrate a key component of such circuit, a waveguide single-photon detector. Our detectors, based on superconducting nanowires on GaAs ridge waveguides, provide high efficiency (20%) at telecom wavelengths, high timing accuracy (60 ps), response time in the ns range, and are fully compatible with the integration of single-photon sources, passive networks and modulators.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 846
Permanent link to this record
 

 
Author Bulaevskii, L. N.; Graf, M. J.; Batista, C. D.; Kogan, V. G.
Title (down) Vortex-induced dissipation in narrow current-biased thin-film superconducting strips Type Journal Article
Year 2011 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 83 Issue 14 Pages 9
Keywords
Abstract A vortex crossing a thin-film superconducting strip from one edge to the other, perpendicular to the bias current, is the dominant mechanism of dissipation for films of thickness d on the order of the coherence length ξ and of width w much narrower than the Pearl length Λâ‰<ab>wâ‰<ab>ξ. At high bias currents I*<I<Ic the heat released by the crossing of a single vortex suffices to create a belt-like normal-state region across the strip, resulting in a detectable voltage pulse. Here Ic is the critical current at which the energy barrier vanishes for a single vortex crossing. The belt forms along the vortex path and causes a transition of the entire strip into the normal state. We estimate I* to be roughly Ic/3. Furthermore, we argue that such “hot” vortex crossings are the origin of dark counts in photon detectors, which operate in the regime of metastable superconductivity at currents between I* and Ic. We estimate the rate of vortex crossings and compare it with recent experimental data for dark counts. For currents below I*, that is, in the stable superconducting but resistive regime, we estimate the amplitude and duration of voltage pulses induced by a single vortex crossing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes SSPD Approved no
Call Number RPLAB @ gujma @ Serial 688
Permanent link to this record