toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kawamura, J.; Blundell, R.; Tong, C.-Y. E.; Golts'man, G.; Gershenzon, E.; Voronov B. url  openurl
  Title (down) Superconductive NbN hot-electron bolometric mixer performance at 250 GHz Type Conference Article
  Year 1996 Publication Proc. 7th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 7th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 331-336  
  Keywords NbN HEB mixers  
  Abstract Thin film NbN (<40 A) strips are used as waveguide mixer elements. The electron cooling mechanism for the geometry is the electron-phonon interaction. We report a receiver noise temperature of 750 K at 244 GHz, with / IF = 1.5 GHz, Af= 500 MHz, and Tphysical = 4 K. The instantaneous bandwidth for this mixer is 1.6 GHz. The local oscillator (LO) power is 0.5 1.tW with 3 dB-uncertainty. The mixer is linear to 1 dB up to an input power level 6 dB below the LO power. We report the first detection of a molecular line emission using this class of mixer, and that the receiver noise temperature determined from Y-factor measurements reflects the true heterodyne sensitivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 945  
Permanent link to this record
 

 
Author Kawamura, J.; Blundell, R.; Tong, C.-Y. E.; Papa, D. C.; Hunter, T. R.; Paine, S. N.; Patt, F.; Gol'tsman, G.; Cherednichenko, S.; Voronov, B.; Gershenzon, E. url  doi
openurl 
  Title (down) Superconductive hot-electron-bolometer mixer receiver for 800-GHz operation Type Journal Article
  Year 2000 Publication IEEE Trans. Microw. Theory Techn. Abbreviated Journal IEEE Trans. Microw. Theory Techn.  
  Volume 48 Issue 4 Pages 683-689  
  Keywords NbN HEB mixers, LO power, local oscillator power, saturation, linearity, dynamic range  
  Abstract In this paper, we describe a superconductive hot-electron-bolometer mixer receiver designed to operate in the partially transmissive 350-μm atmospheric window. The receiver employs an NbN thin-film microbridge as the mixer element, in which the main cooling mechanism of the hot electrons is through electron-phonon interaction. At a local-oscillator frequency of 808 GHz, the measured double-sideband receiver noise temperature is TRX=970 K, across a 1-GHz intermediate-frequency bandwidth centered at 1.8 GHz. We have measured the linearity of the receiver and the amount of local-oscillator power incident on the mixer for optimal operation, which is PLO&ap;1 μW. This receiver was used in making observations as a facility instrument at the Heinrich Hertz Telescope, Mt. Graham, AZ, during the 1998-1999 winter observing season.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9480 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ lobanovyury @ Serial 573  
Permanent link to this record
 

 
Author Kawamura, Jonathan; Blundell, Raymond; Tong, C.-Y. Edward; Papa, D. Cosmo; Hunter, Todd R.; Paine, Scot.t. N.; Patt, Ferdinand; Gol'tsman, Gregory; Cherednichenko, Sergei; Voronov, Boris; Gershenzon, Eugene doi  openurl
  Title (down) Superconductive hot-electron bolometer mixer receiver for 800 GHz operation Type Miscellaneous
  Year 2000 Publication IEEE Trans. Microwave Theory and Techniques Abbreviated Journal IEEE Trans. Microwave Theory and Techniques  
  Volume 48 Issue 4 Pages 683-689  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ s @ Kawamura_superconductivehot-electron Serial 424  
Permanent link to this record
 

 
Author Gershenzon, E.M.; Gol'tsman, G.N.; Dzardanov, A.L.; Kuznetsov, E.A. url  openurl
  Title (down) Superconducting UHF-limiter based on electron heating up Type Journal Article
  Year 1992 Publication Sverkhprovodimost': Fizika, Khimiya, Tekhnika Abbreviated Journal Sverkhprovodimost': Fizika, Khimiya, Tekhnika  
  Volume 5 Issue 11 Pages 2164-2170  
  Keywords electron heating, applications  
  Abstract The results of experimental investigation of fast-action 5HF-limiter are presented; the limiter is based on the utilization of electron hetaing phenomenon in thin superconducting films. The design of SHF-limiter, which is intended for operation at liquid helium temperatures and which has the form of a section of superconducting NbN microstrip line for 1-12 GHz rang, is described.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0235-8964 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1669  
Permanent link to this record
 

 
Author Goltsman, Gregory url  openurl
  Title (down) Superconducting thin film nanostructures as terahertz and infrared heterodyne and direct detectors Type Conference Article
  Year 2017 Publication 16th ISEC Abbreviated Journal 16th ISEC  
  Volume Issue Pages Th-I-QTE-03 (1 to 3)  
  Keywords waveguide SSPD, SNSPD  
  Abstract We present our recent achievements in the development of superconducting nanowire single-photon detectors (SNSPDs) integrated with optical waveguides on a chip. We demonstrate both single-photon counting with up to 90% on-chipquantum-efficiency (OCDE), and the heterodyne mixing with a close to the quantum limit sensitivity at the telecommunication wavelength using single device.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IEEE/CSC & ESAS Superconductivity News Forum  
  Notes Approved no  
  Call Number Serial 1745  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: