|   | 
Details
   web
Records
Author Sáysz, Wojciech; Guziewicz, Marek; Bar, Jan; Wegrzecki, Maciej; Grabiec, Piotr; Grodecki, Remigiusz; Wegrzecka, Iwona; Zwiller, Val; Milosnaya, Irina; Voronov, Boris; Gol’tsman, Gregory; Kitaygorsky, Jen; Sobolewski, Roman
Title (down) Superconducting NbN nanostructures for single photon quantum detectors Type Abstract
Year 2008 Publication Proc. 7-th Int. Conf. Ion Implantation and Other Applications of Ions and Electrons Abbreviated Journal Proc. 7-th Int. Conf. Ion Implantation and Other Applications of Ions and Electrons
Volume Issue Pages 160
Keywords SSPD, SNSPD
Abstract Practical quantum systems such as quantum communication (QC) or quantum measurement systems require detectors with high speed, high sensitivity, high quantum efficiency (QE), and short deadtimes along with precise timing characteristics and low dark counts. Superconducting single photon detectors (SSPDs) based on ultrathin meander type NbN nanostripes (operated at T=2-5K) are a new and highly promising type of devices fulfilling above requirements. In this paper we present results of the SSPDs nanostructure technological optimization. The base for our detector is thin-film (4nm) NbN layer deposited on 350- P m-thick sapphire substrate The active element of the detector is a meander- nanostructure made of 4-nm-thick and 100-nm-wide NbN stripe, covering 10 u 10 P m 2 area with the filling factor ~0,5. The NbN superconducting films were deposited on sapphire substrates by DC reactive magnetron sputtering whereas the meander element of the detector was patterned by the direct electron-beam lithography followed by reactive-ion etching. To enhance the SSPD efficiency at Ȝ = 1.55 P m, we have performed an approach to increase the absorption of the detector by integrating it with optical resonant cavity. An optical microcavity optimized for absorption of 1.55 P m photons was designed as an one-mirror resonator consisting of a Ȝ/4 dielectric layer and a metallic mirror. The microcavity was deposited on the top of the NbN SSPD meander. The resonator was formed by the dielectric SiO 2 layer and metal mirror made of gold or palladium. Microcavity layers were deposited using a magnetron sputtering system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1409
Permanent link to this record
 

 
Author Korneev, A. A.
Title (down) Superconducting NbN microstrip single-photon detectors Type Abstract
Year 2021 Publication Proc. Quantum Optics and Photon Counting Abbreviated Journal Proc. Quantum Optics and Photon Counting
Volume 11771 Issue Pages
Keywords NbN SSPD, SNSPD
Abstract Superconducting Single-Photon Detectors (SSPD) invented two decades ago have evolved to a mature technology and have become devices of choice in the advanced applications of quantum optics, such as quantum cryptography and optical quantum computing. In these applications SSPDs are coupled to single-mode fibers and feature almost unity detection efficiency, negligible dark counts, picosecond timing jitter and MHz photon count rate. Meanwhile, there are great many applications requiring coupling to multi-mode fibers or free space. ‘Classical’ SSPDs with 100-nm-wide superconducting strip and covering area of about 100 µm2 are not suitable for further scaling due to degradation of performance and low fabrication yield. Recently we have demonstrated single-photon counting in micron-wide superconducting bridges and strips. Here we present our approach to the realization of practical photon-counting detectors of large enough area to be efficiently coupled to multi-mode fibers or free space. The detector is either a meander or a spiral of 1-µm-wide strip covering an area of 50x50 µm2. Being operated at 1.7K temperature it demonstrates the saturated detection efficiency (i.e. limited by the absorption in the detector) up to 1550 nm wavelength, about 10 ns dead time and timing jitter in range 50-100 ps.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Prochazka, I.; Štefaňák, M.; Sobolewski, R.; Gábris, A.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Quantum Optics and Photon Counting; SPIE Optics + Optoelectronics, 2021, Online Only
Notes Approved no
Call Number Serial 1784
Permanent link to this record
 

 
Author Goltsman, G.
Title (down) Superconducting NbN hot-electron bolometer mixer, direct detector and single-photon counter: from devices to systems Type Report
Year 2009 Publication 2-nd Int. Conf. EUROFLUX Abbreviated Journal 2-nd Int. Conf. EUROFLUX
Volume Issue Pages
Keywords HEB, SSPD, SNSPD
Abstract
Address Avignon, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Provided by the SAO/NASA Astrophysics Data System Approved no
Call Number Serial 1398
Permanent link to this record
 

 
Author Hu, Xiaolong; Dauler, Eric A.; Molnar, Richard J.; Berggren, Karl K.
Title (down) Superconducting nanowire single-photon detectors integrated with optical nano-antennae Type Journal Article
Year 2011 Publication Optics Express Abbreviated Journal Opt. Express
Volume 19 Issue 1 Pages 17-31
Keywords optical antennas
Abstract Optical nano-antennae have been integrated with semiconductor lasers to intensify light at the nanoscale and photodiodes to enhance photocurrent. In quantum optics, plasmonic metal structures have been used to enhance nonclassical light emission from single quantum dots. Absorption and detection of single photons from free space could also be enhanced by nanometallic antennae, but this has not previously been demonstrated. Here, we use nano-optical transmission effects in a one-dimensional gold structure, combined with optical cavity resonance, to form optical nano-antennae, which are further used to couple single photons from free space into a 80-nm-wide superconducting nanowire. This antenna-assisted coupling enables a superconducting nanowire single-photon detector with 47% device efficiency at the wavelength of 1550 nm and 9-μm-by-9-μm active area while maintaining a reset time of only 5 ns. We demonstrate nanoscale antenna-like structures to achieve exceptional efficiency and speed in single-photon detection.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 745
Permanent link to this record
 

 
Author Wang, Zhen; Miki, S.; Fujiwara, M.
Title (down) Superconducting nanowire single-photon detectors for quantum information and communications Type Journal Article
Year 2009 Publication IEEE J. Sel. Topics Quantum Electron. Abbreviated Journal
Volume 15 Issue 6 Pages 1741-1747
Keywords SSPD
Abstract Superconducting nanowire single-photon detectors (SNSPDs or SSPD) are highly promising devices in the growing field of quantum information and communications technology. We have developed a practical SSPD system with our superconducting thin films and devices fabrication, optical coupling packaging, and cryogenic technology. The SSPD system consists of six-channel SSPD devices and a compact Gifford-McMahon (GM) cryocooler, and can operate continuously on 100 V ac power without the need for any cryogens. The SSPD devices were fabricated from high-quality niobium nitride (NbN) ultrathin films that were epitaxially grown on single-crystal MgO substrates. The packaged SSPD devices were temperature stabilized to 2.96 K ± 10 mK. The system detection efficiency for an SSPD device with an area of 20 × 20 ¿m2 was found to be 2.6% and 4.5% at wavelengths of 1550 and 1310 nm, respectively, at a dark count rate of 100 Hz, and a jitter of 100 ps full-width at half maximum. We also performed ultrafast BB84 quantum key distribution (QKD) field testing and entanglement-based QKD experiments using these SSPD devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 676
Permanent link to this record