toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Konstantatos, Gerasimos; Sargent, Edward H. openurl 
  Title (down) Nanostructured materials for photon detection Type Journal Article
  Year 2010 Publication Nature Nanotechnology Abbreviated Journal Nat. Nanotech.  
  Volume 5 Issue 6 Pages 391–400  
  Keywords  
  Abstract The detection of photons underpins imaging, spectroscopy, fibre-optic communications and time-gated distance measurements. Nanostructured materials are attractive for detection applications because they can be integrated with conventional silicon electronics and flexible, large-area substrates, and can be processed from the solution phase using established techniques such as spin casting, spray coating and layer-by-layer deposition. In addition, their performance has improved rapidly in recent years. Here we review progress in light sensing using nanostructured materials, focusing on solution-processed materials such as colloidal quantum dots and metal nanoparticles. These devices exhibit phenomena such as absorption of ultraviolet light, plasmonic enhancement of absorption, size-based spectral tuning, multiexciton generation, and charge carrier storage in surface and interface traps.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes SSPD Approved no  
  Call Number RPLAB @ gujma @ Serial 684  
Permanent link to this record
 

 
Author Gao, Jie; McMillan, James F.; Wong, Chee Wei openurl 
  Title (down) Nanophotonics: Remote on-chip coupling Type Journal Article
  Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume 6 Issue 1 Pages 7-8  
  Keywords fromIPMRAS  
  Abstract Scientists have demonstrated strongly coupled photon states between two distant high-Q photonic crystal cavities connected by a photonic crystal waveguide. Remote dynamic control over the coupled states could aid the development of delay lines, optical buffers and qubit operations in both classical and quantum information processing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 779  
Permanent link to this record
 

 
Author Tang, Liang; Kocabas, Sukru Ekin; Latif, Salman; Okyay, Ali K.; Ly-Gagnon, Dany-Sebastien; Saraswat, Krishna C.; Miller, David A. B. openurl 
  Title (down) Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna Type Journal Article
  Year 2008 Publication Nature Photonics Abbreviated Journal  
  Volume 2 Issue Pages 226-229  
  Keywords optical antennas  
  Abstract A critical challenge for the convergence of optics and electronics is that the micrometre scale of optics is significantly larger than the nanometre scale of modern electronic devices. In the conversion from photons to electrons by photodetectors, this size incompatibility often leads to substantial penalties in power dissipation, area, latency and noise. A photodetector can be made smaller by using a subwavelength active region; however, this can result in very low responsivity because of the diffraction limit of the light. Here we exploit the idea of a half-wave Hertz dipole antenna (length approx 380 nm) from radio waves, but at near-infrared wavelengths (length approx 1.3 microm), to concentrate radiation into a nanometre-scale germanium photodetector. This gives a polarization contrast of a factor of 20 in the resulting photocurrent in the subwavelength germanium element, which has an active volume of 0.00072 microm3, a size that is two orders of magnitude smaller than previously demonstrated detectors at such wavelengths.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 858  
Permanent link to this record
 

 
Author Peruzzo, Alberto; Laing, Anthony; Politi, Alberto; Rudolph, Terry; O'Brien, Jeremy L. openurl 
  Title (down) Multimode quantum interference of photons in multiport integrated devices Type Journal Article
  Year 2011 Publication Nature Communications Abbreviated Journal Nat. Comm.  
  Volume 2 Issue 224 Pages 6  
  Keywords fromIPMRAS  
  Abstract Photonics is a leading approach in realizing future quantum technologies and recently, optical waveguide circuits on silicon chips have demonstrated high levels of miniaturization and performance. Multimode interference (MMI) devices promise a straightforward implementation of compact and robust multiport circuits. Here, we show quantum interference in a 2×2 MMI coupler with visibility of V=95.6+/-0.9%. We further demonstrate the operation of a 4×4 port MMI device with photon pairs, which exhibits complex quantum interference behaviour. We have developed a new technique to fully characterize such multiport devices, which removes the need for phase-sensitive measurements and may find applications for a wide range of photonic devices. Our results show that MMI devices can operate in the quantum regime with high fidelity and promise substantial simplification and concatenation of photonic quantum circuits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 763  
Permanent link to this record
 

 
Author Capmany, José; Gasulla, Ivana; Sales, Salvador openurl 
  Title (down) Microwave photonics: Harnessing slow light Type Journal Article
  Year 2011 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume 5 Issue 12 Pages 731-733  
  Keywords fromIPMRAS  
  Abstract Slow-light techniques originally conceived for buffering high-speed digital optical signals now look set to play an important role in providing broadband phase and true time delays for microwave signals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 778  
Permanent link to this record
 

 
Author Gustafsson, Martin V.; Santos, Paulo V.; Johansson, Göran; Delsing, Per openurl 
  Title (down) Local probing of propagating acoustic waves in a gigahertz echo chamber Type Journal Article
  Year 2012 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 8 Issue 4 Pages 338-343  
  Keywords fromIPMRAS  
  Abstract In the same way that micro-mechanical resonators resemble guitar strings and drums, surface acoustic waves resemble the sound these instruments produce, but moving over a solid surface rather than through air. In contrast with oscillations in suspended resonators, such propagating mechanical waves have not before been studied near the quantum mechanical limits. Here, we demonstrate local probing of surface acoustic waves with a displacement sensitivity of 30amRMSHz-1/2 and detection sensitivity on the single-phonon level after averaging, at a frequency of 932MHz. Our probe is a piezoelectrically coupled single-electron transistor, which is sufficiently fast, non-destructive and localized to enable us to track pulses echoing back and forth in a long acoustic cavity, self-interfering and ringing the cavity up and down. We project that strong coupling to quantum circuits will enable new experiments, and hybrids using the unique features of surface acoustic waves. Prospects include quantum investigations of phonon-phonon interactions, and acoustic coupling to superconducting qubits for which we present favourable estimates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 813  
Permanent link to this record
 

 
Author Schwarz, Brent openurl 
  Title (down) Lidar: Mapping the world in 3D Type Journal Article
  Year 2010 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume 4 Issue 7 Pages 429-430  
  Keywords LIDAR  
  Abstract A high-definition LIDAR system with a rotating sensor head containing 64 semiconductor lasers allows the efficient generation of 3D environment maps at unprecedented levels of detail.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 696  
Permanent link to this record
 

 
Author Schmidt, Markus A. openurl 
  Title (down) Integration: Fibres embrace optoelectronics Type Journal Article
  Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume 6 Issue 3 Pages 143-145  
  Keywords fromIPMRAS  
  Abstract The demonstration of an in-fibre semiconductor photodetector with gigahertz bandwidth bodes well for the future development of hybrid fibre optoelectronics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 789  
Permanent link to this record
 

 
Author He, Rongrui; Sazio, Pier J. A.; Peacock, Anna C.; Healy, Noel; Sparks, Justin R.; Krishnamurthi, Mahesh; Gopalan, Venkatraman; Badding, John V. openurl 
  Title (down) Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres Type Journal Article
  Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume 6 Issue 3 Pages 174-179  
  Keywords fromIPMRAS  
  Abstract The prospect of an all-fibre optical communications network in which light can be generated, modulated and detected within the fibre itself without the need for discrete optoelectronic devices is an appealing one. However, to become a reality, this approach requires the incorporation of optoelectronic materials and functionalities into silica fibres to create a new breed of semiconductor-fibre hybrid devices for performing various tasks. Here, we report the integration of precisely doped semiconductor materials and high-quality rectifying semiconductor junctions into microstructured optical fibres, enabling high-speed, in-fibre functionalities such as photodetection at telecommunications wavelengths. These semiconductor-fibre hybrid devices exhibit a bandwidth of up to 3 GHz and seamless coupling to standard single-mode optical fibres.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 783  
Permanent link to this record
 

 
Author Collins, M. J.; Xiong, C.; Rey, I. H.; Vo, T. D.; He, J.; Shahnia, S.; Reardon, C.; Krauss, T. F.; Steel, M. J.; Clark, M.J.; & Eggleton, B.J. doi  openurl
  Title (down) Integrated spatial multiplexing of heralded single-photon sources Type Journal Article
  Year 2013 Publication Nature Communications Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The non-deterministic nature of photon sources is a key limitation for single-photon quantum processors. Spatial multiplexing overcomes this by enhancing the heralded single-photon yield without enhancing the output noise. Here the intrinsic statistical limit of an individual source is surpassed by spatially multiplexing two monolithic silicon-based correlated photon pair sources in the telecommunications band, demonstrating a 62.4% increase in the her- alded single-photon output without an increase in unwanted multipair generation. We further demonstrate the scalability of this scheme by multiplexing photons generated in two waveguides pumped via an integrated coupler with a 63.1% increase in the heralded photon rate. This demonstration paves the way for a scalable architecture for multiplexing many photon sources in a compact integrated platform and achieving efficient two-photon inter- ference, required at the core of optical quantum computing and quantum communication protocols.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ alex_kazakov @ Serial 1001  
Permanent link to this record
 

 
Author Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto; Sansoni, Linda; Bongioanni, Irene; Sciarrino, Fabio; Vallone, Giuseppe; Mataloni, Paolo openurl 
  Title (down) Integrated photonic quantum gates for polarization qubits Type Journal Article
  Year 2011 Publication Nature Communications Abbreviated Journal Nat. Comm.  
  Volume 2 Issue 566 Pages 6  
  Keywords fromIPMRAS  
  Abstract The ability to manipulate quantum states of light by integrated devices may open new perspectives both for fundamental tests of quantum mechanics and for novel technological applications. However, the technology for handling polarization-encoded qubits, the most commonly adopted approach, is still missing in quantum optical circuits. Here we demonstrate the first integrated photonic controlled-NOT (CNOT) gate for polarization-encoded qubits. This result has been enabled by the integration, based on femtosecond laser waveguide writing, of partially polarizing beam splitters on a glass chip. We characterize the logical truth table of the quantum gate demonstrating its high fidelity to the expected one. In addition, we show the ability of this gate to transform separable states into entangled ones and vice versa. Finally, the full accessibility of our device is exploited to carry out a complete characterization of the CNOT gate through a quantum process tomography.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 765  
Permanent link to this record
 

 
Author Sahu, Mitrabhanu; Bae, Myung-Ho; Rogachev, Andrey; Pekker, David; Wei, Tzu-Chieh; Shah, Nayana; Goldbart, Paul M.; Bezryadin, Alexey doi  openurl
  Title (down) Individual topological tunnelling events of a quantum field probed through their macroscopic consequences Type Journal Article
  Year 2009 Publication Nature Phys. Abbreviated Journal Nature Phys.  
  Volume 5 Issue Pages 503-508  
  Keywords phase slips, superconducting nanowires  
  Abstract Phase slips are topological fluctuations that carry the superconducting order-parameter field between distinct current-carrying states. Owing to these phase slips, superconducting nanowires acquire electrical resistance. In such wires, it is well known that at higher temperatures phase slips occur through the process of thermal barrier-crossing by the order-parameter field. At low temperatures, the general expectation is that phase slips should proceed through quantum tunnelling events, which are known as quantum phase slips. However, resistive measurements have produced evidence both for and against the occurrence of quantum phase slips. Here, we report evidence for the observation of individual quantum phase-slip events in homogeneous ultranarrow wires at high bias currents. We accomplish this through measurements of the distribution of switching currents for which the width exhibits a rather counter-intuitive, monotonic increase with decreasing temperature. Importantly, measurements show that in nanowires with larger critical currents, quantum fluctuations dominate thermal fluctuations up to higher temperatures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Recommended by Klapwijk Approved no  
  Call Number Serial 928  
Permanent link to this record
 

 
Author Feofanov, A. K.; Oboznov, V. A.; Bol'Ginov, V. V.; Lisenfeld, J.; Poletto, S.; Ryazanov, V. V.; Rossolenko, A. N.; Khabipov, M.; Balashov, D.; Zorin, A. B.; Dmitriev, P. N.; Koshelets, V. P.; Ustinov, A. V. openurl 
  Title (down) Implementation of superconductor/ferromagnet/ superconductor Type Journal Article
  Year 2010 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 6 Issue 8 Pages 593-597  
  Keywords fromIPMRAS  
  Abstract High operation speed and low energy consumption may allow the superconducting digital single-flux-quantum circuits to outperform traditional complementary metal-oxide-semiconductor logic. The remaining major obstacle towards high element densities on-chip is a relatively large cell size necessary to hold a magnetic flux quantum Φ0. Inserting a Ï€-type Josephson junction in the cell is equivalent to applying flux Φ0/2 and thus makes it possible to solve this problem. Moreover, using Ï€-junctions in superconducting qubits may help to protect them from noise. Here we demonstrate the operation of three superconducting circuits-two of them are classical and one quantum-that all utilize such Ï€-phase shifters realized using superconductor/ferromagnet/superconductor sandwich technology. The classical circuits are based on single-flux-quantum cells, which are shown to be scalable and compatible with conventional niobium-based superconducting electronics. The quantum circuit is a Ï€-biased phase qubit, for which we observe coherent Rabi oscillations. We find no degradation of the measured coherence time compared to that of a reference qubit without a Ï€-junction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 805  
Permanent link to this record
 

 
Author Pile, David openurl 
  Title (down) How many bits can a photon carry Type Journal Article
  Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume 6 Issue 1 Pages 14-15  
  Keywords fromIPMRAS  
  Abstract Quantum physics offers a way to enhance the amount of information a photon can carry, with potential applications in optical communication, lithography, metrology and imaging.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes View from... OSA Frontiers in Optics 2011: How many bits can a photon carry? Approved no  
  Call Number RPLAB @ gujma @ Serial 780  
Permanent link to this record
 

 
Author Freer, Erik M.; Grachev, Oleg; Duan, Xiangfeng; Martin, Samuel; Stumbo, David P. openurl 
  Title (down) High-yield self-limiting single-nanowire assembly with dielectrophoresis Type Journal Article
  Year 2010 Publication Nature Nanotechnology Abbreviated Journal Nat. Nanotech.  
  Volume 5 Issue 7 Pages 525–530  
  Keywords  
  Abstract Single-crystal nanowire transistors and other nanowire-based devices could have applications in large-area and flexible electronics if conventional top-down fabrication techniques can be integrated with high-precision bottom-up nanowire assembly. Here, we extend dielectrophoretic nanowire assembly to achieve a 98.5% yield of single nanowires assembled over 16,000 patterned electrode sites with submicrometre alignment precision. The balancing of surface, hydrodynamic and dielectrophoretic forces makes the self-assembly process controllable, and a hydrodynamic force component makes it self-limiting. Our approach represents a methodology to quantify nanowire assembly, and makes single nanowire assembly possible over an area limited only by the ability to reproduce process conditions uniformly.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes SSPD Approved no  
  Call Number RPLAB @ gujma @ Serial 683  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: