|   | 
Details
   web
Records
Author Schuck, C.; Pernice, W. H. P.; Minaeva, O.; Li, Mo; Gol'tsman, G.; Sergienko, A. V.; Tang, H. X.
Title (down) Matrix of integrated superconducting single-photon detectors with high timing resolution Type Journal Article
Year 2013 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 23 Issue 3 Pages 2201007-2201007
Keywords NbN SSPD, SNSPD, array, matrix
Abstract We demonstrate a large grid of individually addressable superconducting single photon detectors on a single chip. Each detector element is fully integrated into an independent waveguide circuit with custom functionality at telecom wavelengths. High device density is achieved by fabricating the nanowire detectors in traveling wave geometry directly on top of silicon-on-insulator waveguides. Our superconducting single photon detector matrix includes detector designs optimized for high detection efficiency, low dark count rate, and high timing accuracy. As an example, we exploit the high timing resolution of a particularly short nanowire design to resolve individual photon round-trips in a cavity ring-down measurement of a silicon ring resonator.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1373
Permanent link to this record
 

 
Author Gayduchenko, I. A.; Fedorov, G. E.; Moskotin, M. V.; Yagodkin, D. I.; Seliverstov, S. V.; Goltsman, G. N.; Yu Kuntsevich, A.; Rybin, M. G.; Obraztsova, E. D.; Leiman, V. G.; Shur, M. S.; Otsuji, T.; Ryzhii, V. I.
Title (down) Manifestation of plasmonic response in the detection of sub-terahertz radiation by graphene-based devices Type Journal Article
Year 2018 Publication Nanotechnol. Abbreviated Journal Nanotechnol.
Volume 29 Issue 24 Pages 245204 (1 to 8)
Keywords single layer graphene, graphene nanoribbons
Abstract We report on the sub-terahertz (THz) (129-450 GHz) photoresponse of devices based on single layer graphene and graphene nanoribbons with asymmetric source and drain (vanadium and gold) contacts. Vanadium forms a barrier at the graphene interface, while gold forms an Ohmic contact. We find that at low temperatures (77 K) the detector responsivity rises with the increasing frequency of the incident sub-THz radiation. We interpret this result as a manifestation of a plasmonic effect in the devices with the relatively long plasmonic wavelengths. Graphene nanoribbon devices display a similar pattern, albeit with a lower responsivity.
Address Physics Department, Moscow State University of Education, Moscow 119991, Russia. National Research Center 'Kurchatov Institute', 123182, Moscow, Russia
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Medium
Area Expedition Conference
Notes PMID:29553479 Approved no
Call Number Serial 1308
Permanent link to this record
 

 
Author Baryshev, A. M.; Wild, W.; Likhachev, S. F.; Vdovin, V. F.; Goltsman, G. N.; Kardashev, N. S.
Title (down) Main parameters and instrumentation of Millimetron space mission Type Abstract
Year 2009 Publication Proc. 20th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 20th ISSTT
Volume Issue Pages 108
Keywords SVLBI, Millimetron space observatory
Abstract Millimetron (official RosKosmos name ”Spectrum-M”) is a part of ambitious program called Spectrum intended to cover the whole electromagnetic spectrum with world class facilities. It is an approved mission included in Russian space program with the launch date in 2017..2019 time frame. The Millimetron satellite has a deployable 12 m diameter antenna with inner solid 4..6 m dish and a rim of petals. The mirror design is largely based on Radioastron mission concept that will be launched in 2009. If the antenna is passively cooled by radiation to open space, it would operate at approx. 50 K surface temperature, due to presence of a deployable three layer radiation screen. As a goal, there is a consideration of active cooling of antenna to 4 K, but this will depend on resources available to the project. Lagrangian libration point L2 considered for Millimetron orbit. There are four groups of scientific instruments envisioned: SVLBI instruments Space-Earth VLBI. It will allow to achieve unprecedented spatial resolution. Millimetron mission will attempt to achieve a mm/submm wave SVLBI. For that purpose, a SVLBI instrument covering selected ALMA bands and a standard VLBI band is envisioned, accompanied by a maser reference oscillator, a data digitizing and memory system, and a high speed data transmission link to ground. The ALMA bands can be extended to cover water lines if detector technology allows. Type of detector – heterodyne. Photometer/polarimeter. Recent progress in direct detector cameras with low spectral resolution, allows to propose a large format (5-10 kPixel) photometer camera on board of Millimetron mission. This camera can cover 0.1 – 2 THz region (with adequate amount of pixels per each subband). Wide band moderate resolution imaging spectrometer. Wide band moderate R = 1000 imaging spectrometer type instrument similar to SPICA SAFARI is planned, taking advantage of large cooled dish. It will cover the adequate spectral range allowable by antenna and will also work below 1 THz, as no ground instrument can have a cold main dish. High resolution spectrometer. For high resolution spectroscopy a heterodyne instrument is proposed, conceptually similar to HIFI on Herschel. This instrument will cover interesting frequency spots in 0.5..4 THz frequency range (using central part of antenna for higher frequency). It is sure that advances in LO and mixer technology will allow this frequency coverage.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1401
Permanent link to this record
 

 
Author Mel’nikov, A. P.; Gurvich, Y. A.; Shestakov, L. N.; Gershenzon, E. M.
Title (down) Magnetic field effects on the nonohmic impurity conduction of uncompensated crystalline silicon Type Journal Article
Year 2001 Publication Jetp Lett. Abbreviated Journal Jetp Lett.
Volume 73 Issue 1 Pages 44-47
Keywords uncompensated crystalline silicon, nonohmic impurity conduction, magnetic field
Abstract The impurity conduction of a series of crystalline silicon samples with the concentration of major impurity N ≈ 3 × 1016 cm−3 and with a varied, but very small, compensation K was measured as a function of the electric field E in various magnetic fields H-σ(H, E). It was found that, at K < 10−3 and in moderate E, where these samples are characterized by a negative nonohmicity (dσ(0, E)/dE < 0), the ratio σ(H, E)/σ(0, E) > 1 (negative magnetoresistance). With increasing E, these inequalities are simultaneously reversed (positive nonohmicity and positive magnetoresistance). It is suggested that both negative and positive nonohmicities are due to electron transitions in electric fields from impurity ground states to states in the Mott-Hubbard gap.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-3640 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1752
Permanent link to this record
 

 
Author Goltsman, G. N.; Maliavkin, A. V.; Ptitsina, N. G.; Selevko, A. G.
Title (down) Magnetic exciton spectroscopy in uniaxially compressed Ge at submillimeter waves Type Conference Article
Year 1986 Publication Izv. Akad. Nauk SSSR, Seriya Fizicheskaya Abbreviated Journal Izv. Akad. Nauk SSSR, Seriya Fizicheskaya
Volume 50 Issue Pages 280-281
Keywords Ge, axial compression loads, excitons, germanium, magnetic spectroscopy, submillimeter waves, Zeeman effect
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0367-6755 ISBN Medium
Area Expedition Conference 3rd Vsesoiuznyi Seminar po Opticheskomu Detektirovaniiu Magnitnykh Rezonansov v Tverdykh Telakh, Kiev, Ukrainian SSR, May 1985
Notes Approved no
Call Number Serial 1708
Permanent link to this record
 

 
Author Ovchinnikov, O. V.; Perepelitsa, A. S.; Smirnov, M. S.; Latyshev, A. N.; Grevtseva, I. G.; Vasiliev, R. B.; Goltsman, G. N.; Vitukhnovsky, A. G.
Title (down) Luminescence of colloidal Ag2S/ZnS core/shell quantum dots capped with thioglycolic acid Type Journal Article
Year 2020 Publication J. Luminescence Abbreviated Journal J. Luminescence
Volume 220 Issue Pages 117008 (1 to 7)
Keywords Ag2S QD, quantum dots
Abstract The features of IR luminescence of colloidal AgS QDs passivated with thioglycolic acid (AgS/TGA) under the formation of AgS/ZnS/TGA core/shell QDs are considered. A 4.5-fold increase in the quantum yield of recombination IR luminescence within the band with a peak at 960 nm (1.29 eV), full width at half maximum of 250 nm (0.34 eV), and the Stokes shift with respect to the exciton absorption of 0.6 eV was found. The increase in the IR luminescence intensity of AgS/ZnS/TGA QDs is accompanied by an increase in the average luminescence lifetime from 2.9 ns to 14.3 ns, which is explained as “healing” of surface trap states during the formation of the ZnS shell. For the first time, the enhancement of the luminescence intensity photodegradation (hereinafter referred to as fatigue) was found during the formation of the AgS/ZnS/TGA core/shell QDs. The luminescence fatigue is irreversible. We conclude that the initial stage of photolysis of the AgS core QDs under laser irradiation plays a key role. Low-atomic photolytic clusters of silver formed on the AgS core QDs act as luminescence quenching centers and do not reveal structural transformations into AgS, provided that the clusters are not in contact with TGA.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2313 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1267
Permanent link to this record
 

 
Author Ryabchun, S. A.; Tretyakov, I. V.; Pentin, I. V.; Kaurova, N. S.; Seleznev, V. A.; Voronov, B. M.; Finkel, M. I.; Maslennikov, S. N.; Gol'tsman, G. N.
Title (down) Low-noise wide-band hot-electron bolometer mixer based on an NbN film Type Journal Article
Year 2009 Publication Radiophys. Quant. Electron. Abbreviated Journal
Volume 52 Issue 8 Pages 576-582
Keywords HEB mixer, in-situ contacts, noise temperature, conversion gain bandwidth, diffusion cooling channel
Abstract We develop and study a hot-electron bolometer mixer made of a two-layer NbN–Au film in situ deposited on a silicon substrate. The double-sideband noise temperature of the mixer is 750 K at a frequency of 2.5 THz. The conversion efficiency measurements show that at the superconducting transition temperature, the intermediate-frequency bandwidth amounts to about 6.5 GHz for a mixer 0.112 μm long. These record-breaking characteristics are attributed to the improved contacts between a sensitive element and a helical antenna and are reached due to using the in situ deposition of NbN and Au layers at certain stages of the process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 599
Permanent link to this record
 

 
Author Goltsman, Gregory N.; Vachtomin, Yuriy B.; Antipov, Sergey V.; Finkel, Matvey I.; Maslennikov, Sergey N.; Polyakov, Stanislav L.; Svechnikov, Sergey I.; Kaurova, Natalia S.; Grishina, Elisaveta V.; Voronov, Boris M.
Title (down) Low-noise NbN phonon-cooled hot-electron bolometer mixers for terahertz heterodyne receivers Type Conference Article
Year 2005 Publication Proc. 9-th WMSCI Abbreviated Journal Proc. 9-th WMSCI
Volume 9 Issue Pages 154-159
Keywords NbN HEB mixers
Abstract
Address
Corporate Author Thesis
Publisher International Institute of Informatics and Systemics Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 547
Permanent link to this record
 

 
Author Yngvesson, K. S.; Gerecht, E.; Musante, C. F.; Zhuang, Y.; Ji, M.; Goyette, T. M.; Dickinson, J. C.; Waldman, J.; Yagoubov, P. A.; Gol’tsman, G. N.; Voronov, B. M.; Gershenzon, E. M.
Title (down) Low-noise HEB heterodyne receivers and focal plane arrays for the THz regime using NbN Type Conference Article
Year 1999 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 3795 Issue Pages 357-368
Keywords NbN HEB mixers
Abstract We have developed prototype HEB receivers using thin film superconducting NbN devices deposited on silicon substrates. The devices are quasi-optically coupled through a silicon lens and a self-complementary log-specific toothed antenna. We measured DSB receiver noise temperatures of 500 K (13 X hf/2k) at 1.56 THz and 1,100 K (20 X hf/2k) at 2.24 THz. Noise temperatures are expected to fall further as devices and quasi-optical coupling methods are being optimized. The measured 3 dB IF conversion gain bandwidth for one device was 3 GHz, and it is estimated that the bandwidth over which the receiver noise temperature is within 3 dB of its minimum value is 6.5 GHz which is sufficient for a number of practical applications. We will discuss our latest results and give a detailed description of our prototype setup and experiments. We will also discuss our plans for developing focal plane arrays with tens of Hot Electron Bolometric mixer elements on a single silicon substrate which will make real time imaging systems in the THz region feasible.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Hwu, R.J.; Wu, K.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Terahertz and Gigahertz Photonics
Notes Approved no
Call Number Serial 1561
Permanent link to this record
 

 
Author Hajenius, M.; Baselmans, J. J. A.; Gao, J. R.; Klapwijk, T. M.; de Korte, P. A. J.; Voronov, B.; Gol'tsman, G.
Title (down) Low noise NbN superconducting hot electron bolometer mixers at 1.9 and 2.5 THz Type Journal Article
Year 2004 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 17 Issue 5 Pages S224-S228
Keywords NbN HEB mixers
Abstract NbN phonon-cooled hot electron bolometer mixers (HEBs) have been realized with negligible contact resistance between the bolometer itself and the contact structure. Using a combination of in situ cleaning of the NbN film and the use of an additional superconducting interlayer of a 10 nm NbTiN layer between the Au of the contact structure and the NbN film superior noise temperatures have been obtained as low as 950 K at 2.5 THz and 750 K at 1.9 THz. Here we address in detail the DC characterization of these devices, the interface transparencies between the bolometers and the contacts and the consequences of these factors on the mixer performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 558
Permanent link to this record