toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Grotz, Bernhard; Hauf, Moritz V.; Dankerl, Markus; Naydenov, Boris; Pezzagna, Sébastien; Meijer, Jan; Jelezko, Fedor; Wrachtrup, Jörg; Stutzmann, Martin; Reinhard, Friedemann; Garrido, Jose A. openurl 
  Title (down) Charge state manipulation of qubits in diamond Type Journal Article
  Year 2012 Publication Nature Communications Abbreviated Journal Nat. Comm.  
  Volume 3 Issue 729 Pages 6  
  Keywords fromIPMRAS  
  Abstract The nitrogen-vacancy (NV) centre in diamond is a promising candidate for a solid-state qubit. However, its charge state is known to be unstable, discharging from the qubit state NV- into the neutral state NV0 under various circumstances. Here we demonstrate that the charge state can be controlled by an electrolytic gate electrode. This way, single centres can be switched from an unknown non-fluorescent state into the neutral charge state NV0, and the population of an ensemble of centres can be shifted from NV0 to NV-. Numerical simulations confirm the manipulation of the charge state to be induced by the gate-controlled shift of the Fermi level at the diamond surface. This result opens the way to a dynamic control of transitions between charge states and to explore hitherto inaccessible states, such as NV+.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 770  
Permanent link to this record
 

 
Author Ulhaq, A.; Weiler, S.; Ulrich, S. M.; Roßbach, R.; Jetter, M.; Michler, P. openurl 
  Title (down) Cascaded single-photon emission from the Mollow triplet sidebands of a quantum dot Type Journal Article
  Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume 6 Issue 4 Pages 238-242  
  Keywords fromIPMRAS  
  Abstract Emission from a resonantly excited quantum emitter is a fascinating research topic within the field of quantum optics and is a useful source for different types of quantum light fields. The resonance spectrum consists of a single spectral line that develops into a triplet above saturation of the quantum emitter. The three closely spaced photon channels from the resonance fluorescence have different photon statistical signatures. We present a detailed photon statistics analysis of the resonance fluorescence emission triplet from a solid-state-based artificial atom, that is, a semiconductor quantum dot. The photon correlation measurements demonstrate both `single' and `cascaded' photon emission from the Mollow triplet sidebands. The bright and narrow sideband emission (5.9 × 106 photons per second into the first lens) can be conveniently frequency-tuned by laser detuning over 15 times its linewidth (Δv ~ 1.0 GHz). These unique properties make the Mollow triplet sideband emission a valuable light source for quantum light spectroscopy and quantum information applications, for example.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 788  
Permanent link to this record
 

 
Author Buchanan, Mark openurl 
  Title (down) Body of evidence Type Manuscript
  Year 2010 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 6 Issue Pages  
  Keywords fromIPMRAS  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 837  
Permanent link to this record
 

 
Author Goulielmakis, Eleftherios openurl 
  Title (down) Attosecond photonics: Extreme ultraviolet catastrophes Type Journal Article
  Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume 6 Issue 3 Pages 142-143  
  Keywords fromIPMRAS  
  Abstract Extreme ultraviolet attosecond pulses, which emerge from the interaction of atoms with intense laser fields, play a central role in modern ultrafast science and the exploration of electron behaviour. Recent work now shows that catastrophe theory can help optimize the properties of these pulses.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 791  
Permanent link to this record
 

 
Author Taylor, F.W. url  doi
openurl 
  Title (down) Atmospheric physics: Natural lasers on Venus and Mars Type Journal Article
  Year 1983 Publication Nature Abbreviated Journal Nature  
  Volume 306 Issue 5944 Pages 640-640  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 457  
Permanent link to this record
 

 
Author Bozyigit, D.; Lang, C.; Steffen, L.; Fink, J. M.; Eichler, C.; Baur, M.; Bianchetti, R.; Leek, P. J.; Filipp, S.; da Silva, M. P.; Blais, A.; Wallraff, A. openurl 
  Title (down) Antibunching of microwave-frequency photons observed in correlation measurements using linear detectors Type Journal Article
  Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 7 Issue 2 Pages 154-158  
  Keywords fromIPMRAS  
  Abstract At optical frequencies the radiation produced by a source, such as a laser, a black body or a single-photon emitter, is frequently characterized by analysing the temporal correlations of emitted photons using single-photon counters. At microwave frequencies, however, there are no efficient single-photon counters yet. Instead, well-developed linear amplifiers allow for efficient measurement of the amplitude of an electromagnetic field. Here, we demonstrate first- and second-order correlation function measurements of a pulsed microwave-frequency single-photon source integrated on the same chip with a 50/50 beam splitter followed by linear amplifiers and quadrature amplitude detectors. We clearly observe single-photon coherence in first-order and photon antibunching in second-order correlation function measurements of the propagating fields.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 835  
Permanent link to this record
 

 
Author Novotny, Lukas; van Hulst, Niek openurl 
  Title (down) Antennas for light Type Journal Article
  Year 2011 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume 5 Issue 2 Pages 83-90  
  Keywords optical antennas  
  Abstract Optical antennas are devices that convert freely propagating optical radiation into localized energy, and vice versa. They enable the control and manipulation of optical fields at the nanometre scale, and hold promise for enhancing the performance and efficiency of photodetection, light emission and sensing. Although many of the properties and parameters of optical antennas are similar to their radiowave and microwave counterparts, they have important differences resulting from their small size and the resonant properties of metal nanostructures. This Review summarizes the physical properties of optical antennas, provides a summary of some of the most important recent developments in the field, discusses the potential applications and identifies the future challenges and opportunities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 748  
Permanent link to this record
 

 
Author Kawano, Yukio; Ishibashi, Koji url  doi
openurl 
  Title (down) An on-chip near-field terahertz probe and detector Type Journal Article
  Year 2008 Publication Nature Photonics Abbreviated Journal Nature Photon  
  Volume 2 Issue 10 Pages 618-621  
  Keywords single molecule, terahertz, THz, near-field, microscopy, imaging, 2DEG, GaAs/AlGaAs, detector, applications  
  Abstract The advantageous properties of terahertz waves, such as their transmission through objects opaque to visible light, are attracting attention for imaging applications. A promising approach for achieving high spatial resolution is the use of near-field imaging. Although this method has been well established in the visible and microwave regions, it is challenging to perform in the terahertz region. In the terahertz techniques investigated to date, detectors have been located remotely from the probe, which degrades sensitivity, and the influence of far-field waves is unavoidable. Here we present a new integrated detection device for terahertz near-field imaging in which all the necessary detection components — an aperture, a probe and a terahertz detector — are integrated on one semiconductor chip, which is cryogenically cooled. This scheme allows highly sensitive, high-resolution detection of the evanescent field alone and promises new capabilities for high-resolution terahertz imaging.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1749-4885 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 570  
Permanent link to this record
 

 
Author Arcizet, O.; Jacques, V.; Siria, A.; Poncharal, P.; Vincent, P.; Seidelin, S. openurl 
  Title (down) A single nitrogen-vacancy defect coupled to a nanomechanical oscillator Type Journal Article
  Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 7 Issue 11 Pages 879-883  
  Keywords fromIPMRAS  
  Abstract We position a single nitrogen-vacancy (NV) centre hosted in a diamond nanocrystal at the extremity of a SiC nanowire. This novel hybrid system couples the degrees of freedom of two radically different systems: a nanomechanical oscillator and a single quantum object. We probe the dynamics of the nano-resonator through time-resolved nanocrystal fluorescence and photon-correlation measurements, conveying the influence of a mechanical degree of freedom on a non-classical photon emitter. Moreover, by immersing the system in a strong magnetic field gradient, we induce a magnetic coupling between the nanomechanical oscillator and the NV electronic spin, providing nanomotion readout through a single electronic spin. Spin-dependent forces inherent to this coupling scheme are essential in a variety of active cooling and entanglement protocols used in atomic physics, and should now be within the reach of nanomechanical hybrid systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 819  
Permanent link to this record
 

 
Author Biercuk, Michael J. openurl 
  Title (down) A quantum spectrum analyser Type Journal Article
  Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 7 Issue Pages 525–526  
  Keywords fromIPMRAS  
  Abstract Noise filters based on so-called dynamical decoupling pulse sequences can suppress decoherence in quantum systems. Turning this idea on its head now provides a new technique for studying the noise itself.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 826  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: