| 
Citations
 | 
   web
Масленников, С. Н. (2007). Смесители на эффекте электронного разогрева для терагерцового и инфракрасного диапазонов. Ph.D. thesis, , .
toggle visibility
Финкель, М. И. (2006). Терагерцовые смесители на эффекте электронного разогрева в ультратонких плёнках NbN и NbTiN. Ph.D. thesis, , .
toggle visibility
Gershenson, M. E., Gong, D., Sato, T., Karasik, B. S., & Sergeev, A. V. (2001). Millisecond electron-phonon relaxation in ultrathin disordered metal films at millikelvin temperatures. Appl. Phys. Lett., 79, 2049–2051.
toggle visibility
Ferrari, S., Kovalyuk, V., Hartmann, W., Vetter, A., Kahl, O., Lee, C., et al. (2017). Hot-spot relaxation time current dependence in niobium nitride waveguide-integrated superconducting nanowire single-photon detectors. Opt. Express, 25(8), 8739–8750.
toggle visibility
Käufl, H. U., Rothermal, H., & Drapatz, S. (1984). Investigation of the Martian atmosphere by 10 micron heterodyne spectroscopy. A&A, 136, 319–325.
toggle visibility
Rothermel, H., Käufl, H. U., Schrey, U., & Drapatz, S. (1988). Thermal structure of the Martian mesosphere. A&A, 196, 296–300.
toggle visibility
Johnson, M. A., Betz, A. L., McLaren, R. A., Townes, C. H., & Sutton, E. C. (1976). Nonthermal 10 micron CO2 emission lines in the atmospheres of Mars and Venus. A&A, 208, 145.
toggle visibility
Rothermel, H., Käufl, H. U., & Yu, Y. (1983). A heterodyne spectrometer for astronomical measurements at 10 micrometers. A&A, 126, 387–392.
toggle visibility
Betz, A. L., Johnson, M. A., McLaren, R. A., & Sutton, E. C. (1976). Heterodyne detection of CO2 emission lines and wind velocities in the atmosphere of Venus. Astrophys. J., 208, L141–L144.
toggle visibility
Soifer, B. T., & Pipher, J. L. (1978). Instrumentation for infrared astronomy. Annual Rev. Astron. Astrophys., 16(1), 335–369.
toggle visibility