|   | 
Details
   web
Records
Author Il'in, K. S.; Lindgren, M.; Currie, M. A.; Semenov, D.; Gol'tsman, G. N.; Sobolewski, Roman; Cherednichenko, S. I.; Gershenzon, E. M.
Title Picosecond hot-electron energy relaxation in NbN superconducting photodetectors Type (down) Journal Article
Year 2000 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 76 Issue 19 Pages 2752-2754
Keywords NbN HEB detectors, two-temperature model, IF bandwidth
Abstract We report time-resolved characterization of superconducting NbN hot-electron photodetectors using an electro-optic sampling method. Our samples were patterned into micron-size microbridges from 3.5-nm-thick NbN films deposited on sapphire substrates. The devices were illuminated with 100 fs optical pulses, and the photoresponse was measured in the ambient temperature range between 2.15 and 10.6 K (superconducting temperature transition TC). The experimental data agreed very well with the nonequilibrium hot-electron, two-temperature model. The quasiparticle thermalization time was ambient temperature independent and was measured to be 6.5 ps. The inelastic electron–phonon scattering time Ï„e–ph tended to decrease with the temperature increase, although its change remained within the experimental error, while the phonon escape time Ï„es decreased almost by a factor of two when the sample was put in direct contact with superfluid helium. Specifically, Ï„e–ph and Ï„es, fitted by the two-temperature model, were equal to 11.6 and 21 ps at 2.15 K, and 10(±2) and 38 ps at 10.5 K, respectively. The obtained value of Ï„e–ph shows that the maximum intermediate frequency bandwidth of NbN hot-electron phonon-cooled mixers operating at TC can reach 16(+4/–3) GHz if one eliminates the bolometric phonon-heating effect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 856
Permanent link to this record
 

 
Author Floet D. W.; Gao J. R.; Klapwijk T. M.; de Korte P. A. J.
Title Bias Dependence of the Thermal Time Constant in Nb Superconducting Diffusion-Cooled HEB Mixers Type (down) Journal Article
Year 2000 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 77 Issue Pages 1719
Keywords
Abstract We present an experimental study of the intermediate frequency bandwidth of a Nb diffusion-cooled hot-electron bolometer mixer for different bias voltages. The measurements show that the bandwidth increases with increasing voltage. Analysis of the data reveals that this effect is mainly caused by a decrease of the intrinsic thermal time of the mixer and that the effect of electrothermal feedback through the intermediate frequency circuit is small. The results are understood using a qualitative model, which takes into account the different effective diffusion constants in the normal and superconducting domains.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ atomics90 @ Serial 971
Permanent link to this record
 

 
Author Manus, M. K. Mc; Kash, J. A.; Steen, S. E.; Polonsky, S.; Tsang, J.C.; Knebel, D. R.; Huott, W.
Title PICA: Backside failure analysis of CMOS circuits using picosecond imaging circuit analysis Type (down) Journal Article
Year 2000 Publication Microelectronics Reliability Abbreviated Journal Microelectronics Reliability
Volume 40 Issue Pages 1353-1358
Keywords SSPD, CMOS testing
Abstract Normal operation of complementary metal-oxide semiconductor (CMOS) devices entails the emission of picosecond pulses of light, which can be used to diagnose circuit problems. The pulses that are observed from submicron sized field effect transistors (FETs) are synchronous with logic state switching. Picosecond Imaging Circuit Analysis (PICA), a new optical imaging technique combining imaging with timing, spatially resolves individual devices at the 0.5 micron level and switching events on a 10 picosecond timescale. PICA is used here for the diagnostics of failures on two VLSI microprocessors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1054
Permanent link to this record
 

 
Author Cherednichenko, S.; Rönnung, F.; Gol'tsman, G.; Kollberg, E.; Winkler, D.
Title YBa2Cu3O7−δ hot-electron bolometer mixer Type (down) Journal Article
Year 2000 Publication Phys. C: Supercond. Abbreviated Journal Phys. C: Supercond.
Volume 341-348 Issue Pages 2653-2654
Keywords YBCO HTS HEB mixers
Abstract We present an investigation of hot-electron bolometric mixer based on YBa2Cu3O7−δ (YBCO) superconducting thin film. Mixer conversion loss, absorbed local oscillator power and intermediate frequency bandwidth was measured at the local oscillator frequency 600 GHz. The fabrication technique for nanoscale YBCO hot-electron bolometer (HEB) mixer integrated into planar antenna structure is described.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1552
Permanent link to this record
 

 
Author Semenov, A. D.; Gol’tsman, G. N.
Title Nonthermal mixing mechanism in a diffusion-cooled hot-electron detector Type (down) Journal Article
Year 2000 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 87 Issue 1 Pages 502-510
Keywords NbN HEB mixers, nonthermal
Abstract We present an analysis of a diffusion-cooled hot-electron detector fabricated from clean superconducting material with low transition temperature. The distinctive feature of a clean material, i.e., material with large electron mean free path, is a relatively weak inelastic electron scattering that is not sufficient for the establishment of an elevated thermodynamic electron temperature when the detector is subjected to irradiation. We propose an athermal model of a diffusion-cooled detector that relies on suppression of the superconducting energy gap by the actual dynamic distribution of excess quasiparticles. The resistive state of the device is caused by the electric field penetrating into the superconducting bridge from metal contacts. The dependence of the penetration length on the energy gap delivers the detection mechanism. The sources of the electric noise are equilibrium fluctuations of the number of thermal quasiparticles and frequency dependent shot noise. Using material parameters typical for A1, we evaluate performance of the device in the heterodyne regime at terahertz frequencies. Estimates show that the mixer may have a noise temperature of a few quantum limits and a bandwidth of a few tens of GHz, while the required local oscillator power is in the μW range due to ineffective suppression of the energy gap by quasiparticles with high energies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1558
Permanent link to this record