toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Finkel, M.; Thierschmann, H. R.; Galatro, L.; Katan, A. J.; Thoen, D. J.; de Visser, P. J.; Spirito, M.; Klapwijk, T. M. url  doi
isbn  openurl
  Title Branchline and directional THz coupler based on PECVD SiNx-technology Type (up) Conference Article
  Year 2016 Publication 41st IRMMW-THz Abbreviated Journal 41st IRMMW-THz  
  Volume Issue Pages  
  Keywords microstrip, fixtures, coplanar waveguides, couplers, standards, probes, dielectrics  
  Abstract A fabrication technology to realize THz microstrip lines and passive circuit components is developed and tested making use of a plasma-enhanced chemical vapor deposition grown silicon nitride (PECVD SiNx) dielectric membrane. We use 2 μm thick SiNx and 300 nm thick gold layers on sapphire substrates. We fabricate a set of structures for thru-reflect-line (TRL) calibration, with the reflection standard implemented as a short through the via. We find losses of 9.5 dB/mm at 300 GHz for a 50 Ohm line. For a branchline coupler we measure 2.5 dB insertion loss, 1 dB amplitude imbalance and 21 dB isolation. Good control over the THz lines parameters is proven by similar performance of a set of 5 structures. The directional couplers show -14 dB transmission to the coupled port, -24 dB to the isolated port and -25 dB in reflection. The SiNx membrane, used as a dielectric, is compatible with atomic force microscopy (AFM) cantilevers allowing the application of this technology to the development of a THz near-field microscope.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2162-2035 ISBN 978-1-4673-8485-8 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number 7758586 Serial 1295  
Permanent link to this record
 

 
Author Gayduchenko, I. A.; Fedorov, G. E.; Stepanova, T. S.; Titova, N.; Voronov, B. M.; But, D.; Coquillat, D.; Diakonova, N.; Knap, W.; Goltsman, G. N. url  doi
openurl 
  Title Asymmetric devices based on carbon nanotubes as detectors of sub-THz radiation Type (up) Conference Article
  Year 2016 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 741 Issue Pages 012143 (1 to 6)  
  Keywords carbon nanotubes, CNT  
  Abstract Demand for efficient terahertz (THz) radiation detectors resulted in intensive study of the asymmetric carbon nanostructures as a possible solution for that problem. In this work, we systematically investigate the response of asymmetric carbon nanodevices to sub-terahertz radiation using different sensing elements: from dense carbon nanotube (CNT) network to individual CNT. We conclude that the detectors based on individual CNTs both semiconducting and quasi-metallic demonstrate much stronger response in sub-THz region than detectors based on disordered CNT networks at room temperature. We also demonstrate the possibility of using asymmetric detectors based on CNT for imaging in the THz range at room temperature. Further optimization of the device configuration may result in appearance of novel terahertz radiation detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1336  
Permanent link to this record
 

 
Author Seliverstov, S. V.; Rusova, A. A.; Kaurova, N. S.; Voronov, B. M.; Goltsman, G. N. url  doi
openurl 
  Title Attojoule energy resolution of direct detector based on hot electron bolometer Type (up) Conference Article
  Year 2016 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 741 Issue Pages 012165 (1 to 5)  
  Keywords NbN HEB detector  
  Abstract We characterize superconducting antenna-coupled NbN hot-electron bolometer (HEB) for direct detection of THz radiation operating at a temperature of 9.0 K. At signal frequency of 2.5 THz, the measured value of the optical noise equivalent power is 2.0×10-13 W-Hz-0.5. The estimated value of the energy resolution is about 1.5 aJ. This value was confirmed in the experiment with pulsed 1.55-μm laser employed as a radiation source. The directly measured detector energy resolution is 2 aJ. The obtained risetime of pulses from the detector is 130 ps. This value was determined by the properties of the RF line. These characteristics make our detector a device-of-choice for a number of practical applications associated with detection of short THz pulses.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Seliverstov_2016 Serial 1337  
Permanent link to this record
 

 
Author Schroeder, E.; Mauskopf, P.; Pilyavsky, G.; Sinclair, A.; Smith, N.; Bryan, S.; Mani, H.; Morozov, D.; Berggren, K.; Zhu, D.; Smirnov, K.; Vakhtomin, Y. url  doi
openurl 
  Title On the measurement of intensity correlations from laboratory and astronomical sources with SPADs and SNSPDs Type (up) Conference Article
  Year 2016 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 9907 Issue Pages 99070P (1 to 13)  
  Keywords SPAD, NbN SSPD applications, SNSPD  
  Abstract We describe the performance of detector modules containing silicon single photon avalanche photodiodes (SPADs) and superconducting nanowire single photon detectors (SNSPDs) to be used for intensity interferometry. The SPADs are mounted in fiber-coupled and free-space coupled packages. The SNSPDs are mounted in a small liquid helium cryostat coupled to single mode fiber optic cables which pass through a hermetic feed-through. The detectors are read out with microwave amplifiers and FPGA-based coincidence electronics. We present progress on measurements of intensity correlations from incoherent sources including gas-discharge lamps and stars with these detectors. From the measured laboratory performance of the correlation system, we estimate the sensitivity to intensity correlations from stars using commercial telescopes and larger existing research telescopes.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Malbet, F.; Creech-Eakman, M.J.; Tuthill, P.G.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Optical and Infrared Interferometry and Imaging V  
  Notes Approved no  
  Call Number Serial 1809  
Permanent link to this record
 

 
Author Shcheslavskiy, V.; Morozov, P.; Divochiy, A.; Vakhtomin, Yu.; Smirnov, K.; Becker, W. url  doi
openurl 
  Title Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector Type (up) Journal Article
  Year 2016 Publication Rev. Sci. Instrum. Abbreviated Journal  
  Volume 87 Issue Pages 053117 (1 to 5)  
  Keywords SSPD, SNSPD, TCSPC, jitter  
  Abstract Time resolution is one of the main characteristics of the single photon detectors besides quantum efficiency and dark count rate. We demonstrate here an ultrafast time-correlated single photon counting (TCSPC) setup consisting of a newly developed single photon counting board SPC-150NX and a superconducting NbN single photon detector with a sensitive area of 7 × 7 μm. The combination delivers a record instrument response function with a full width at half maximum of 17.8 ps and system quantum efficiency ~5% at wavelength of 1560 nm. A calculation of the root mean square value of the timing jitter for channels with counts more than 1% of the peak value yielded about 7.6 ps. The setup has also good timing stability of the detector–TCSPC board.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1077  
Permanent link to this record
 

 
Author Khasminskaya, S.; Pyatkov, F.; Słowik, K.; Ferrari, S.; Kahl, O.; Kovalyuk, V.; Rath, P.; Vetter, A.; Hennrich, F.; Kappes, M. M.; Gol'tsman, G.; Korneev, A.; Rockstuhl, C.; Krupke, R.; Pernice, W. H. P. doi  openurl
  Title Fully integrated quantum photonic circuit with an electrically driven light source Type (up) Journal Article
  Year 2016 Publication Nat. Photon. Abbreviated Journal Nat. Photon.  
  Volume 10 Issue 11 Pages 727-732  
  Keywords Carbon nanotubes and fullerenes, Integrated optics, Single photons and quantum effects, Waveguide integrated single-photon detector  
  Abstract Photonic quantum technologies allow quantum phenomena to be exploited in applications such as quantum cryptography, quantum simulation and quantum computation. A key requirement for practical devices is the scalable integration of single-photon sources, detectors and linear optical elements on a common platform. Nanophotonic circuits enable the realization of complex linear optical systems, while non-classical light can be measured with waveguide-integrated detectors. However, reproducible single-photon sources with high brightness and compatibility with photonic devices remain elusive for fully integrated systems. Here, we report the observation of antibunching in the light emitted from an electrically driven carbon nanotube embedded within a photonic quantum circuit. Non-classical light generated on chip is recorded under cryogenic conditions with waveguide-integrated superconducting single-photon detectors, without requiring optical filtering. Because exclusively scalable fabrication and deposition methods are used, our results establish carbon nanotubes as promising nanoscale single-photon emitters for hybrid quantum photonic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ kovalyuk @ Serial 1105  
Permanent link to this record
 

 
Author Tret'yakov, I. V.; Kaurova, N. S.; Voronov, B. M.; Anfert'ev, V. A.; Revin, L. S.; Vaks, V. L.; Gol'tsman, G. N. doi  openurl
  Title The influence of the diffusion cooling on the noise band of the superconductor NbN hot-electron bolometer operating in the terahertz range Type (up) Journal Article
  Year 2016 Publication Tech. Phys. Lett. Abbreviated Journal  
  Volume 42 Issue 6 Pages 563-566  
  Keywords HEB, noise bandwidth, conversion gain bandwidth, noise temperature, Andreev reflection  
  Abstract Results of an experimental study of the noise temperature (Tn) and noise bandwidth (NBW) of the superconductor NbN hot-electron bolometer (HEB) mixer as a function of its temperature (Tb) are presented. It was determined that the NBW of the mixer is significantly wider at temperatures close to the critical ones (Tc) than are values measured at 4.2 K. The NBW of the mixer measured at the heterodyne frequency of 2.5 THz at temperature Tb close to Tc was ~13 GHz, as compared with 6 GHz at Tb = 4.2 K. This experiment clearly demonstrates the limitation of the thermal flow from the NbN bridge at Tb â‰<aa> Tc for mixers manufactured by the in situ technique. This limitation is close in its nature to the Andreev reflection on the superconductor/ metal boundary. In this case, the noise temperature of the studied mixer increased from 1100 to 3800 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1106  
Permanent link to this record
 

 
Author Shcherbatenko, M.; Tretyakov, I.; Lobanov, Yu.; Maslennikov, S. N.; Kaurova, N.; Finkel, M.; Voronov, B.; Goltsman, G.; Klapwijk, T. M. doi  openurl
  Title Nonequilibrium interpretation of DC properties of NbN superconducting hot electron bolometers Type (up) Journal Article
  Year 2016 Publication Appl. Phys. Lett. Abbreviated Journal  
  Volume 109 Issue 13 Pages 132602  
  Keywords HEB mixer, contacts  
  Abstract We present a physically consistent interpretation of the dc electrical properties of niobiumnitride (NbN)-based superconducting hot-electron bolometer mixers, using concepts of nonequilibrium superconductivity. Through this, we clarify what physical information can be extracted from the resistive transition and the dc current-voltage characteristics, measured at suitably chosen temperatures, and relevant for device characterization and optimization. We point out that the intrinsic spatial variation of the electronic properties of disordered superconductors, such as NbN, leads to a variation from device to device.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1107  
Permanent link to this record
 

 
Author Vetter, A.; Ferrari, S.; Rath, P.; Alaee, R.; Kahl, O.; Kovalyuk, V.; Diewald, S.; Goltsman, G. N.; Korneev, A.; Rockstuhl, C.; Pernice, W. H. P. url  doi
openurl 
  Title Cavity-enhanced and ultrafast superconducting single-photon detectors Type (up) Journal Article
  Year 2016 Publication Nano Lett. Abbreviated Journal Nano Lett.  
  Volume 16 Issue 11 Pages 7085-7092  
  Keywords SSPD; SNSPD; multiphoton detection; nanophotonic circuit; photonic crystal cavity  
  Abstract Ultrafast single-photon detectors with high efficiency are of utmost importance for many applications in the context of integrated quantum photonic circuits. Detectors based on superconductor nanowires attached to optical waveguides are particularly appealing for this purpose. However, their speed is limited because the required high absorption efficiency necessitates long nanowires deposited on top of the waveguide. This enhances the kinetic inductance and makes the detectors slow. Here, we solve this problem by aligning the nanowire, contrary to usual choice, perpendicular to the waveguide to realize devices with a length below 1 mum. By integrating the nanowire into a photonic crystal cavity, we recover high absorption efficiency, thus enhancing the detection efficiency by more than an order of magnitude. Our cavity enhanced superconducting nanowire detectors are fully embedded in silicon nanophotonic circuits and efficiently detect single photons at telecom wavelengths. The detectors possess subnanosecond decay ( approximately 120 ps) and recovery times ( approximately 510 ps) and thus show potential for GHz count rates at low timing jitter ( approximately 32 ps). The small absorption volume allows efficient threshold multiphoton detection.  
  Address Institute of Physics, University of Munster , 48149 Munster, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27759401 Approved no  
  Call Number Serial 1208  
Permanent link to this record
 

 
Author Arutyunov, K. Y.; Ramos-Alvarez, A.; Semenov, A. V.; Korneeva, Y. P.; An, P. P.; Korneev, A. A.; Murphy, A.; Bezryadin, A.; Gol'tsman, G. N. url  doi
openurl 
  Title Superconductivity in highly disordered NbN nanowires Type (up) Journal Article
  Year 2016 Publication Nanotechnol. Abbreviated Journal Nanotechnol.  
  Volume 27 Issue 47 Pages 47lt02 (1 to 8)  
  Keywords NbN nanowires  
  Abstract The topic of superconductivity in strongly disordered materials has attracted significant attention. These materials appear to be rather promising for fabrication of various nanoscale devices such as bolometers and transition edge sensors of electromagnetic radiation. The vividly debated subject of intrinsic spatial inhomogeneity responsible for the non-Bardeen-Cooper-Schrieffer relation between the superconducting gap and the pairing potential is crucial both for understanding the fundamental issues of superconductivity in highly disordered superconductors, and for the operation of corresponding nanoelectronic devices. Here we report an experimental study of the electron transport properties of narrow NbN nanowires with effective cross sections of the order of the debated inhomogeneity scales. The temperature dependence of the critical current follows the textbook Ginzburg-Landau prediction for the quasi-one-dimensional superconducting channel I c approximately (1-T/T c)(3/2). We find that conventional models based on the the phase slip mechanism provide reasonable fits for the shape of R(T) transitions. Better agreement with R(T) data can be achieved assuming the existence of short 'weak links' with slightly reduced local critical temperature T c. Hence, one may conclude that an 'exotic' intrinsic electronic inhomogeneity either does not exist in our structures, or, if it does exist, it does not affect their resistive state properties, or does not provide any specific impact distinguishable from conventional weak links.  
  Address National Research University Higher School of Economics, Moscow Institute of Electronics and Mathematics,109028, Moscow, Russia. P L Kapitza Institute for Physical Problems RAS, Moscow, 119334, Russia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27782000 Approved no  
  Call Number Serial 1332  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: