|   | 
Details
   web
Records
Author Shurakov, A.; Prikhodko, A.; Mikhailov, D.; Belikov, I.; Kaurova, N.; Voronov, B.; Goltsman, G.
Title Efficiency of a microwave reflectometry for readout of a THz multipixel Schottky diode direct detector Type (up) Conference Article
Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1695 Issue Pages 012156
Keywords Shottky diode, THz, direct detector, multipixel camera
Abstract In this paper we report on the results of investigation of efficiency of a microwave reflectometry for readout of a terahertz multipixel Schottky diode direct detector. Decent capabilities of the microwave reflectometry readout were earlier justified by us for a hot electron bolometric direct detector. In case of a planar Schottky diode, we observed increase of an optical noise equivalent power by a factor of 2 compared to that measured within a conventional readout scheme. For implementation of a multipixel camera, a microwave reflectometer is to be used to readout each row of the camera, and the row switching is to be maintained by a CMOS analog multiplexer. The diodes within a row have to be equipped with filters to distribute the probing microwave signal properly. The simultaneous use of analog multiplexing and microwave reflectometry enables to reduce the camera response time by a factor of its number of columns.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1153
Permanent link to this record
 

 
Author Tretyakov, I.; Shurakov, A.; Perepelitsa, A.; Kaurova, N.; Svyatodukh, S.; Zilberley, T.; Ryabchun, S.; Smirnov, M.; Ovchinnikov, O.; Goltsman, G.
Title Silicon room temperature IR detectors coated with Ag2S quantum dots Type (up) Conference Article
Year 2019 Publication Proc. IWQO Abbreviated Journal Proc. IWQO
Volume Issue Pages 369-371
Keywords silicon detector, quantum dot, IR, surface states
Abstract For decades silicon has been the chief technological semiconducting material of modern microelectronics. Application of silicon detectors in optoelectronic devices are limited to the visible and near infrared ranges, due to their transparency for radiation with a wavelength higher than 1.1 μm. The expansion Si absorption towards longer wave lengths is a considerable interest to optoelectronic applications. In this work we present an elegant and effective solution to this problem using Ag2S quantum dots, creating impurity states in Si to cause sub-band gap photon absorption. The sensitivity of room temperature zero-bias Si_Ag2S detectors, which we obtained is 1011 cmHzW . Given the variety of QDs parameters such as: material, dimensions, our results open a path towards the future study and development of Si detectors for technological applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-5-89513-451-1 Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1154
Permanent link to this record
 

 
Author Shurakov, Alexander; Maslennikov, Sergey; Tong, Cheuk-yu E.; Gol’tsman, Gregory
Title Performance of an HEB direct detector utilizing a microwave reflection readout scheme Type (up) Conference Article
Year 2015 Publication Proc. 26th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 26th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 36
Keywords HEB detector
Abstract We report the results of our study on the performance of a hot electron bolometric (HEB) direct detector, operated by a microwave pump. The HEB devices used in this work were made from NbN thin film deposited on high resistivity silicon with an in-situ fabrication process. The experimental setup employed is similar to the one described in [1]. The detector chips were glued to a silicon lens clamped to a copper holder mounted on the cold plate of a liquid helium cryostat. Thermal link between the lens and the holder was maintained by a thin indium shim. The HEBs were operated at a bath temperature of about 4.4 K. Conventional phonon pump, commonly realized by raising the bath temperature of the detector, was substituted by a microwave one. In this case, a CW microwave signal is injected to the device through a directional coupler connected directly to the detector holder. The power incident on the HEB device was typically 1-2 μW, and the pump frequency was in the range of 0.5-1.5 GHz. The signal sources were 2 black bodies held at temperatures of 295 K and 77 K. A chopper wheel placed in front of the cryostat window switched the input to the detector between the 2 sources. A modulation frequency of several kilohertz was chosen in order to reduce the effects of the HEB’s flicker noise. A cold mesh filter was used to define the input bandwidth of the detector. The reflected microwave signal from the HEB device was fed into a low noise amplifier, the output of which is connected to a room temperature Schottky microwave power detector. This Schottky detector, in conjunction with a lock-in amplifier, demodulated the input signal modulation from the copper wheel. As the input load was switched, the impedance of the HEB device at the microwave pump frequency also changed in response to the incident signal power variation. Therefore the reflected microwave power follows the incident signal modulation. The derived responsivity from this detection system nicely correlates with the HEB impedance. In order to provide a quantitative description of the impedance variation of the HEB device and the impact of a microwave pump, we have numerically solved the heat balance equations written for the NbN bridge and its surrounding thermal heat sink [2]. Our model also accounts for the impact of the operating frequency of the detector because of non-uniform absorption of low-frequency photons across the NbN bridge [3]. In our measurements we varied the signal source wavelength from 2 mm down to near infrared range, and hence we indirectly performed the impedance measurements at frequencies below, around and far beyond the superconducting gap. Preliminary results show good agreement between the experiment and theoretical prediction. Further measurements are still in progress. [1] A. Shurakov et al., “A Microwave Reflection Readout Scheme for Hot Electron Bolometric Direct Detector”, to appear in IEEE Trans. THz Sci. Tech., 2015. [2] S. Maslennikov, “RF heating efficiency of the terahertz superconducting hot-electron bolometer”, http://arxiv.org/pdf/1404.5276v5.pdf, 2014. [3] W. Miao et al., “Non-uniform absorption of terahertz radiation on superconducting hot electron bolometer microbridges”, Appl. Phys. Let., 104, 052605, 2014.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1158
Permanent link to this record
 

 
Author Korneev, A.; Minaeva, O.; Divochiy, A.; Antipov, A.; Kaurova, N.; Seleznev, V.; Voronov, B.; Gol’tsman, G.; Pan, D.; Kitaygorsky, J.; Slysz, W.; Sobolewski, R.
Title Ultrafast and high quantum efficiency large-area superconducting single-photon detectors Type (up) Conference Article
Year 2007 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 6583 Issue Pages 65830I (1 to 9)
Keywords SSPD, SNSPD, superconducting NbN films, infrared single-photon detectors
Abstract We present our latest generation of superconducting single-photon detectors (SSPDs) patterned from 4-nm-thick NbN films, as meander-shaped  0.5-mm-long and  100-nm-wide stripes. The SSPDs exhibit excellent performance parameters in the visible-to-near-infrared radiation wavelengths: quantum efficiency (QE) of our best devices approaches a saturation level of  30% even at 4.2 K (limited by the NbN film optical absorption) and dark counts as low as 2x10-4 Hz. The presented SSPDs were designed to maintain the QE of large-active-area devices, but, unless our earlier SSPDs, hampered by a significant kinetic inductance and a nanosecond response time, they are characterized by a low inductance and GHz counting rates. We have designed, simulated, and tested the structures consisting of several, connected in parallel, meander sections, each having a resistor connected in series. Such new, multi-element geometry led to a significant decrease of the device kinetic inductance without the decrease of its active area and QE. The presented improvement in the SSPD performance makes our detectors most attractive for high-speed quantum communications and quantum cryptography applications.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor Dusek, M.; Hillery, M.S.; Schleich, W.P.; Prochazka, I.; Migdall, A.L.; Pauchard, A.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1249
Permanent link to this record
 

 
Author Elezov, M. S.; Shcherbatenko, M. L.; Sych, D. V.; Goltsman, G. N.
Title Development of control method for an optimal quantum receiver Type (up) Conference Article
Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1695 Issue Pages 012126
Keywords Helstrom bound, SPD, single photon detector, below quantum limit
Abstract We propose a method for optimal displacement controlling of an optimal quantum receiver for registrations a binary coherent signal. An optimal receiver is able to distinguish between two phase-modulated states of a coherent signal. The optimal receiver controlling method can be used later in practice in various physical implementations of the optimal receiver.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1264
Permanent link to this record
 

 
Author Polyakova, M. I.; Florya, I. N.; Semenov, A. V.; Korneev, A. A.; Goltsman, G. N.
Title Extracting hot-spot correlation length from SNSPD tomography data Type (up) Conference Article
Year 2019 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1410 Issue Pages 012166 (1 to 4)
Keywords SSPD, SNSPD, quantum detector tomography, QDT
Abstract We present data of quantum detector tomography for the samples specifically optimized for this problem. Using this method, we take results of hot-spot correlation length of 17 ± 2 nm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1273
Permanent link to this record
 

 
Author Елезов, М. С.; Щербатенко, М. Л.; Сыч, Д. В.; Гольцман, Г. Н.
Title Практические особенности работы оптоволоконного квантового приемника Кеннеди Type (up) Conference Article
Year 2019 Publication Proc. IWQO Abbreviated Journal Proc. IWQO
Volume Issue Pages 303-305
Keywords Kennedy quantum receiver, fiber, quantum optics, standard quantum limit, superconducting nanowire single-photon detector, coherent detection
Abstract Мы рассматриваем практические особенности работы квантового приемника на основе схемы Кеннеди, собранного из стандартных оптоволоконных элементов и сверхпроводникового детектора одиночных фотонов. Приемник разработан для различения двух фазовомодулированных когерентных состояний света на длине волны 1,5 микрона в непрерывном режиме с частотой модуляции 200 КГц и уровнем ошибок различения примерно в два раза ниже стандартного квантового предела.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Duplicated as 1288 Approved no
Call Number Serial 1283
Permanent link to this record
 

 
Author Goltsman, G.
Title Quantum-photonic integrated circuits Type (up) Conference Article
Year 2019 Publication Proc. IWQO Abbreviated Journal Proc. IWQO
Volume Issue Pages 22-23
Keywords WSSPD, waveguide SSPD, SNSPD, quantum optics, integrated optics, superconducting nanowire single-photon detector
Abstract We show the design, a history of development as well as the most successful and promising approaches for QPICs realization based on hybrid nanophotonic-superconducting devices, where one of the key elements of such a circuit is a waveguide integrated superconducting single-photon detector (WSSPD). The potential of integration with fluorescent molecules is discussed also.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1287
Permanent link to this record
 

 
Author Svechnikov, S. I.; Finkel, M. I.; Maslennikov, S. N.; Vachtomin, Y. B.; Smirnov, K. V.; Seleznev, V. A.; Korotetskaya, Y. P.; Kaurova, N. S.; Voronov, B. M.; Gol’tsman, G. N.
Title Superconducting hot electron bolometer mixer for middle IR range Type (up) Conference Article
Year 2006 Publication Proc. 16th Int. Crimean Microwave and Telecommunication Technology Abbreviated Journal Proc. 16th Int. Crimean Microwave and Telecommunication Technology
Volume 2 Issue Pages 686-687
Keywords IR NbN HEB mixer, detector, GaAs substrate
Abstract The developed directly lens coupled hot electron bolometer (HEB) mixer was based on 5 nm superconducting NbN deposited on GaAs substrate. The layout of the structure, including 30x20 mcm^2 active area coupled with a 50 Ohm coplanar line, was patterned by photolithography. The responsivity of the mixer was measured in a direct detection mode in the 25-64 THz frequency range. The noise performance of the mixer and the directivity of the receiver were investigated in a heterodyne mode. A 10.6 mum wavelength CW CO2 laser was utilized as a local oscillator.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number 4023440 Serial 1297
Permanent link to this record
 

 
Author Gayduchenko, I.; Fedorov, G.; Titova, N.; Moskotin, M.; Obraztsova, E.; Rybin, M.; Goltsman, G.
Title Towards to the development of THz detectors based on carbon nanostructures Type (up) Conference Article
Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1092 Issue Pages 012039 (1 to 4)
Keywords CVD graphene, carbon nanotubes, CNT, field effect transistors, FET, THz detectors
Abstract Demand for efficient terahertz radiation detectors resulted in intensive study of the carbon nanostructures as possible solution for that problem. In this work we investigate the response to sub-terahertz radiation of detectors with sensor elements based on CVD graphene as well as its derivatives – carbon nanotubes (CNTs). The devices are made in configuration of field effect transistors (FET) with asymmetric source and drain (vanadium and gold) contacts and operate as lateral Schottky diodes. We show that at 300K semiconducting CNTs show better performance up to 300GHz with responsivity up to 100V/W, while quasi-metallic CNTs are shown to operate up to 2.5THz. At 300 K graphene detector exhibit the room-temperature responsivity from R = 15 V/W at f = 129 GHz to R = 3 V/W at f = 450 GHz. We find that at low temperatures (77K) the graphene lateral Schottky diodes responsivity rises with the increasing frequency of the incident sub-THz radiation. We interpret this result as a manifestation of a plasmonic effect in the devices with the relatively long plasmonic wavelengths. The obtained data allows for determination of the most promising directions of development of the technology of nanocarbon structures for the detection of THz radiation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1302
Permanent link to this record
 

 
Author Fedorov, G.; Gayduchenko, I.; Titova, N.; Moskotin, M.; Obraztsova, E.; Rybin, M.; Goltsman, G.
Title Graphene-based lateral Schottky diodes for detecting terahertz radiation Type (up) Conference Article
Year 2018 Publication Proc. Optical Sensing and Detection V Abbreviated Journal Proc. Optical Sensing and Detection V
Volume 10680 Issue Pages 30-39
Keywords graphene, terahertz radiation, detectors, Schottky diodes, carbon nanotubes, plasma waves
Abstract Demand for efficient terahertz radiation detectors resulted in intensive study of the carbon nanostructures as possible solution for that problem. In this work we investigate the response to sub-terahertz radiation of graphene field effect transistors of two configurations. The devices of the first type are based on single layer CVD graphene with asymmetric source and drain (vanadium and gold) contacts and operate as lateral Schottky diodes (LSD). The devices of the second type are made in so-called Dyakonov-Shur configuration in which the radiation is coupled through a spiral antenna to source and top electrodes. We show that at 300 K the LSD detector exhibit the room-temperature responsivity from R = 15 V/W at f= 129 GHz to R = 3 V/W at f = 450 GHz. The DS detector responsivity is markedly lower (2 V/W) and practically frequency independent in the investigated range. We find that at low temperatures (77K) the graphene lateral Schottky diodes responsivity rises with the increasing frequency of the incident sub-THz radiation. We interpret this result as a manifestation of a plasmonic effect in the devices with the relatively long plasmonic wavelengths. The obtained data allows for determination of the most promising directions of development of the technology of nanocarbon structures for the detection of THz radiation.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor Berghmans, F.; Mignani, A.G.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number 10.1117/12.2307020 Serial 1306
Permanent link to this record
 

 
Author Anfertev, V.; Vaks, V.; Revin, L.; Pentin, I.; Tretyakov, I.; Goltsman, G.; Vinogradov, E. A.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R.
Title High resolution THz gas spectrometer based on semiconductor and superconductor devices Type (up) Conference Article
Year 2017 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.
Volume 132 Issue Pages 02001 (1 to 2)
Keywords NbN HEB mixers, detectors, THz spectroscopy
Abstract The high resolution THz gas spectrometer consists of a synthesizer based on Gunn generator with a semiconductor superlattice frequency multiplier as a radiation source, and an NbN hot electron bolometer in a direct detection mode as a THz radiation receiver was presented. The possibility of application of a quantum cascade laser as a local oscillator for a heterodyne receiver which is based on an NbN hot electron bolometer mixer is shown. The ways for further developing of the THz spectroscopy were outlined.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1328
Permanent link to this record
 

 
Author Seliverstov, S. V.; Rusova, A. A.; Kaurova, N. S.; Voronov, B. M.; Goltsman, G. N.
Title Attojoule energy resolution of direct detector based on hot electron bolometer Type (up) Conference Article
Year 2016 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 741 Issue Pages 012165 (1 to 5)
Keywords NbN HEB detector
Abstract We characterize superconducting antenna-coupled NbN hot-electron bolometer (HEB) for direct detection of THz radiation operating at a temperature of 9.0 K. At signal frequency of 2.5 THz, the measured value of the optical noise equivalent power is 2.0×10-13 W-Hz-0.5. The estimated value of the energy resolution is about 1.5 aJ. This value was confirmed in the experiment with pulsed 1.55-μm laser employed as a radiation source. The directly measured detector energy resolution is 2 aJ. The obtained risetime of pulses from the detector is 130 ps. This value was determined by the properties of the RF line. These characteristics make our detector a device-of-choice for a number of practical applications associated with detection of short THz pulses.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Seliverstov_2016 Serial 1337
Permanent link to this record
 

 
Author Goltsman, G. N.
Title Ultrafast nanowire superconducting single-photon detector with photon number resolving capability Type (up) Conference Article
Year 2009 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 7236 Issue Pages 72360D (1 to 11)
Keywords PNR NbN SSPD, SNSPD, superconducting single-photon detectors, photon number resolving detectors, ultrathin NbN films
Abstract In this paper we present a review of the state-of-the-art superconducting single-photon detector (SSPD), its characterization and applications. We also present here the next step in the development of SSPD, i.e. photon-number resolving SSPD which simultaneously features GHz counting rate. We have demonstrated resolution up to 4 photons with quantum efficiency of 2.5% and 300 ps response pulse duration providing very short dead time.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Arakawa, Y.; Sasaki, M.; Sotobayashi, H.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1403
Permanent link to this record
 

 
Author Smirnov, K. V.; Vachtomin, Y. B.; Ozhegov, R. V.; Pentin, I. V.; Slivinskaya, E. V.; Korneev, A. A.; Goltsman, G. N.
Title Fiber coupled single photon receivers based on superconducting detectors for quantum communications and quantum cryptography Type (up) Conference Article
Year 2008 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 7138 Issue Pages 713827 (1 to 6)
Keywords SSPD, SNSPD, superconducting single photon detector, ultra-thin superconducting films, optical fiber coupling, ready to use receiver
Abstract At present superconducting detectors become increasingly attractive for various practical applications. In this paper we present results on the depelopment of fiber coupled receiver systems for the registration of IR single photons, optimized for telecommunication and quantum-cryptography. These receiver systems were developed on the basis of superconducting single photon detectors (SSPD) of VIS and IR wavelength ranges. The core of the SSPD is a narrow ( 100 nm) and long ( 0,5 mm) strip in the form of a meander which is patterned from a 4-nm-thick NbN film (TC=10-11 K, jC= 5-7•106 A/cm2); the sensitive area dimensions are 10×10 μm2. The main problem to be solved while the receiver system development was optical coupling of a single-mode fiber (9 microns in diameter) with the SSPD sensitive area. Characteristics of the developed system at the optical input are as follows: quantum efficiency >10 % (at 1.3 μm), >4 % (at 1.55 μm); dark counts rate ≤1 s-1; duration of voltage pulse ≤5 ns; jitter ≤40 ps. The receiver systems have either one or two identical channels (for the case of carrying out correlation measurements) and are made as an insert in a helium storage Dewar.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor Tománek, P.; Senderáková, D.; Hrabovský, M.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1405
Permanent link to this record