|   | 
Details
   web
Records
Author Ozhegov, R.; Elezov, M.; Kurochkin, Y.; Kurochkin, V.; Divochiy, A.; Kovalyuk, V.; Vachtomin, Y.; Smirnov, K.; Goltsman, G.
Title Quantum key distribution over 300 Type (up) Conference Article
Year 2014 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 9440 Issue Pages 1F (1 to 9)
Keywords SSPD, SNSPD applicatins, quantum key distribution, QKD
Abstract We discuss the possibility of polarization state reconstruction and measurement over 302 km by Superconducting Single- Photon Detectors (SSPDs). Because of the excellent characteristics and the possibility to be effectively coupled to singlemode optical fiber many applications of the SSPD have already been reported. The most impressive one is the quantum key distribution (QKD) over 250 km distance. This demonstration shows further possibilities for the improvement of the characteristics of quantum-cryptographic systems such as increasing the bit rate and the quantum channel length, and decreasing the quantum bit error rate (QBER). This improvement is possible because SSPDs have the best characteristics in comparison with other single-photon detectors. We have demonstrated the possibility of polarization state reconstruction and measurement over 302.5 km with superconducting single-photon detectors. The advantage of an autocompensating optical scheme, also known as “plugandplay” for quantum key distribution, is high stability in the presence of distortions along the line. To increase the distance of quantum key distribution with this optical scheme we implement the superconducting single photon detectors (SSPD). At the 5 MHz pulse repetition frequency and the average photon number equal to 0.4 we measured a 33 bit/s quantum key generation for a 101.7 km single mode ber quantum channel. The extremely low SSPD dark count rate allowed us to keep QBER at 1.6% level.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Orlikovsky, A. A.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference International Conference on Micro- and Nano-Electronics
Notes Approved no
Call Number RPLAB @ sasha @ ozhegov2014quantum Serial 1048
Permanent link to this record
 

 
Author Zhang, W.; Miao, W.; Zhong, J. Q.; Shi, S. C.; Hayton, D. J.; Vercruyssen, N.; Gao, J. R.; Goltsman, G. N.
Title Temperature dependence of superconducting hot electron bolometers Type (up) Conference Article
Year 2013 Publication Not published results: 24th international symposium on space terahertz technology Abbreviated Journal
Volume Issue Pages
Keywords HEB
Abstract
Address Groningen,The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1067
Permanent link to this record
 

 
Author Trifonov, A.; Tong, C.-Y. E.; Grimes, P.; Lobanov, Y.; Kaurova, N.; Blundell, R.; Goltsman, G.
Title Development of A Silicon Membrane-based Multi-pixel Hot Electron Bolometer Receiver Type (up) Conference Article
Year 2017 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 27 Issue 4 Pages 6
Keywords Multi-pixel, HEB, silicon-on-insulator, horn array
Abstract We report on the development of a multi-pixel

Hot Electron Bolometer (HEB) receiver fabricated using

silicon membrane technology. The receiver comprises a

2 × 2 array of four HEB mixers, fabricated on a single

chip. The HEB mixer chip is based on a superconducting

NbN thin film deposited on top of the silicon-on-insulator

(SOI) substrate. The thicknesses of the device layer and

handling layer of the SOI substrate are 20 μm and 300 μm

respectively. The thickness of the device layer is chosen

such that it corresponds to a quarter-wave in silicon at

1.35 THz. The HEB mixer is integrated with a bow-tie

antenna structure, in turn designed for coupling to a

circular waveguide,
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ kovalyuk @ Serial 1111
Permanent link to this record
 

 
Author Lobanov, Y. V.; Shcherbatenko, M. L.; Semenov, A. V.; Kovalyuk, V. V.; Korneev, A. A.; Goltsman, G. N.; Vinogradov, E. A.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R.
Title Heterodyne spectroscopy with superconducting single-photon detector Type (up) Conference Article
Year 2017 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.
Volume 132 Issue Pages 01005
Keywords SSPD mixer, SNSPD
Abstract We demonstrate successful operation of a Superconducting Single Photon Detector (SSPD) as the core element in a heterodyne receiver. Irradiating the SSPD by both a local oscillator power and signal power simultaneously, we observed beat signal at the intermediate frequency of a few MHz. Gain bandwidth was found to coincide with the detector single pulse width, where the latter depends on the detector kinetic inductance, determined by the superconducting nanowire length.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1205
Permanent link to this record
 

 
Author Elezov, M. S.; Ozhegov, R. V.; Goltsman, G. N.; Makarov, V.
Title Development of the experimental setup for investigation of latching of superconducting single-photon detector caused by blinding attack on the quantum key distribution system Type (up) Conference Article
Year 2017 Publication EPJ Web of Conferences Abbreviated Journal EPJ Web of Conferences
Volume 132 Issue 2 Pages 2
Keywords
Abstract Recently bright-light control of the SSPD has been

demonstrated. This attack employed a “backdoor” in the detector biasing

scheme. Under bright-light illumination, SSPD becomes resistive and

remains “latched” in the resistive state even when the light is switched off.

While the SSPD is latched, Eve can simulate SSPD single-photon response

by sending strong light pulses, thus deceiving Bob. We developed the

experimental setup for investigation of a dependence on latching threshold

of SSPD on optical pulse length and peak power. By knowing latching

threshold it is possible to understand essential requirements for

development countermeasures against blinding attack on quantum key

distribution system with SSPDs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ kovalyuk @ Serial 1116
Permanent link to this record
 

 
Author Shcherbatenko, M.; Lobanov, Y.; Semenov, A.; Kovalyuk, V.; Korneev, A.; Ozhegov, R.; Kaurova, N.; Voronov, B.; Goltsman, G.
Title Coherent detection of weak signals with superconducting nanowire single photon detector at the telecommunication wavelength Type (up) Conference Article
Year 2017 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 10229 Issue Pages 0G (1 to 12)
Keywords SSPD mixer, SNSPD, coherent detection, weak signal detection, superconducting nanostructures
Abstract Achievement of the ultimate sensitivity along with a high spectral resolution is one of the frequently addressed problems, as the complication of the applied and fundamental scientific tasks being explored is growing up gradually. In our work, we have investigated performance of a superconducting nanowire photon-counting detector operating in the coherent mode for detection of weak signals at the telecommunication wavelength. Quantum-noise limited sensitivity of the detector was ensured by the nature of the photon-counting detection and restricted by the quantum efficiency of the detector only. Spectral resolution given by the heterodyne technique and was defined by the linewidth and stability of the Local Oscillator (LO). Response bandwidth was found to coincide with the detector’s pulse width, which, in turn, could be controlled by the nanowire length. In addition, the system noise bandwidth was shown to be governed by the electronics/lab equipment, and the detector noise bandwidth is predicted to depend on its jitter. As have been demonstrated, a very small amount of the LO power (of the order of a few picowatts down to hundreds of femtowatts) was required for sufficient detection of the test signal, and eventual optimization could lead to further reduction of the LO power required, which would perfectly suit for the foreseen development of receiver matrices and the need for detection of ultra-low signals at a level of less-than-one-photon per second.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor Prochazka, I.; Sobolewski, R.; James, R.B.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Photon counting applications
Notes Approved no
Call Number 10.1117/12.2267724 Serial 1201
Permanent link to this record
 

 
Author Goltsman, G. N.; Samartsev, V. V.; Vinogradov, E. A.; Naumov, A. V.; Karimullin, K. R.
Title New generation of superconducting nanowire single-photon detectors Type (up) Conference Article
Year 2015 Publication EPJ Web of Conferences Abbreviated Journal EPJ Web of Conferences
Volume 103 Issue Pages 01006 (1 to 2)
Keywords SSPD, SNSPD
Abstract We present an overview of recent results for new generation of infrared and optical superconducting nanowire single-photon detectors (SNSPDs) that has already demonstrated a performance that makes them devices-of-choice for many applications. SNSPDs provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, SNSPDs are also compatible with an integrated optical platform as a crucial requirement for applications in emerging quantum photonic technologies. By embedding SNSPDs in nanophotonic circuits we realize waveguide integrated single photon detectors which unite all desirable detector properties in a single device.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1349
Permanent link to this record
 

 
Author Florya, I. N.; Korneeva, Y. P.; Sidorova, M. V.; Golikov, A. D.; Gaiduchenko, I. A.; Fedorov, G. E.; Korneev, A. A.; Voronov, B. M.; Goltsman, G. N.; Samartsev, V. V.; Vinogradov, E. A.; Naumov, A. V.; Karimullin, K. R.
Title Energy relaxtation and hot spot formation in superconducting single photon detectors SSPDs Type (up) Conference Article
Year 2015 Publication EPJ Web of Conferences Abbreviated Journal EPJ Web of Conferences
Volume 103 Issue Pages 10004 (1 to 2)
Keywords SSPD, SNSPD
Abstract We have studied the mechanism of energy relaxation and resistive state formation after absorption of a single photon for different wavelengths and materials of single photon detectors. Our results are in good agreement with the hot spot model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1351
Permanent link to this record
 

 
Author Kovalyuk, V.; Ferrari, S.; Kahl, O.; Semenov, A.; Lobanov, Y.; Shcherbatenko, M.; Korneev, A.; Pernice, W.; Goltsman, G.
Title Waveguide integrated superconducting single-photon detector for on-chip quantum and spectral photonic application Type (up) Conference Article
Year 2017 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 917 Issue Pages 062032
Keywords SSPD, SNSPD, waveguide
Abstract With use of the travelling-wave geometry approach, integrated superconductor- nanophotonic devices based on silicon nitride nanophotonic waveguide with a superconducting NbN-nanowire suited on top of the waveguide were fabricated. NbN-nanowire was operated as a single-photon counting detector with up to 92 % on-chip detection efficiency in the coherent mode, serving as a highly sensitive IR heterodyne mixer with spectral resolution (f/df) greater than 106 in C-band at 1550 nm wavelength
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ kovalyuk @ Serial 1140
Permanent link to this record
 

 
Author Korneev, A.; Kovalyuk, V.; Ferrari, S.; Kahl, O.; Pernice, W.; An, P.; Golikov, A.; Zubkova, E.; Goltsman, G.
Title Superconducting Single-Photon Detectors for Integrated Nanophotonics Circuits Type (up) Conference Article
Year 2017 Publication 16th ISEC Abbreviated Journal 16th ISEC
Volume Issue Pages 1-3
Keywords SSPD, SNSPD
Abstract We present an overview of our recent achievements in integration of superconducting nanowire single-photon detectors SNSPD with dielectric optical waveguides. We are able to produce complex nanophotonics integrated circuits containing optical elements and photon detector on single chip thus producing a compact integrated platform for quantum optics applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number 8314200 Serial 1200
Permanent link to this record