|   | 
Details
   web
Records
Author Lee, B. G.; Doany, F. E.; Assefa, S.; Green, W.; Yang, M.; Schow, C. L.; Jahnes, C. V.; Zhang, S.; Singer, J.; Kopp, V. I.; Kash, J. A.; Vlasov, Y. A.
Title 20-μm-pitch eight-channel monolithic fiber array coupling 160 Gb/s/channel to silicon nanophotonic chip Type (up) Conference Article
Year 2010 Publication Conf. OFC/NFOEC Abbreviated Journal Conf. OFC/NFOEC
Volume Issue Pages 1-3
Keywords spot size converters, SSC, optical waveguides, optical fiber waveguides, ultra-dense silicon waveguide arrays, silicon waveguides, waveguide arrays, from chiralphotonics
Abstract A multichannel tapered coupler interfacing standard 250-μm-pitch low-NA polarization-maintaining fiber arrays with ultra-dense 20-μm-pitch high-NA silicon waveguides is designed, fabricated, and tested, demonstrating coupling losses below 1 dB and injection bandwidths of 160 Gb/s/channel.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Conference on optical fiber communication, collocated national fiber optic engineers conference
Notes Approved no
Call Number Serial 852
Permanent link to this record
 

 
Author Genack, Azriel Z.; Kopp, Victor I.; Churikov, Victor M.; Singer, Jonathan; Chao, Norman; Neugroschl, Daniel A.
Title Chiral fiber Bragg gratings Type (up) Conference Article
Year 2004 Publication Proceedings of the SPIE Abbreviated Journal Proc. SPIE
Volume 5508 Issue Pages 57-64
Keywords optical fiber gratings, chiral fiber gratings, chiral gratings, from chiralphotonics
Abstract We have produced chiral fiber Bragg gratings with double-helix symmetry and measured the polarization and wavelength selective transmission properties of these structures. These gratings interact only with circularly polarized light with the same handedness as the grating twist and freely transmit light of the orthogonal polarization. The optical characteristics of chiral fibers are compared to those of planar cholesteric structures. The resonant standing wave at the band edge or at a defect state within the band gap, as well as the evanescent wave within the band gap is comprised of two counterpropagating components of equal amplitude. The electric field vector of such a circularly polarized standing wave does not rotate in time; rather it is linearly polarized in any given plane. The standing wave may be described in terms of the sense of circular polarization of the two counterpropagating components. The wavelength dependence of the angle q between the linearly polarized electromagnetic field and the extraordinary axis, which is constant throughout a long structure, is obtained in a simple calculation. The results are in good agreement with scattering matrix calculations. Resonant chiral gratings are demonstrated for microwave radiation whereas chiral gratings with pitch exceeding the wavelength are demonstrated at optical wavelengths in single-mode glass fibers. The different functionalities of these fibers are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 854
Permanent link to this record
 

 
Author Kopp, Victor I.; Churikov, Victor M.; Zhang, Guoyin; Singer, Jonathan; Draper, Christopher W.; Chao, Norman; Neugroschl, Daniel; Genack, Azriel Z.
Title Chiral fiber gratings: perspectives and challenges for sensing applications Type (up) Conference Article
Year 2007 Publication Proceedings of Third european workshop on optical fibre sensors Abbreviated Journal Proc. 3rd European Workshop on Opt. Fibre Sensors
Volume 6619 Issue Pages 66190B-(1-8)
Keywords optical fiber gratings, chiral fiber gratings applications, chiral gratings applications, from chiralphotonics
Abstract Chiral fiber gratings are produced in a microforming process in which optical fibers with noncircular or nonconcentric cores are twisted as they pass though a miniature oven. Periodic glass structures as stable as the glass material itself are produced with helical pitch that ranges from under a micron to hundreds of microns. The geometry of the fiber cross section determines the symmetry of the resulting structure which in turn determines its polarization selectivity. Single helix structures are polarization insensitive while double helix gratings interact only with a single optical polarization. Both single and double helix gratings may act as a fiber long period grating, coupling the core and cladding modes. The coupling is manifested in a series of narrow dips in the transmission spectrum. The dip position is sensitive to fiber elongation, twist and temperature, and to the refractive index of the surrounding medium. The suitability of chiral gratings for sensing pressure, temperature and liquid levels is investigated. Polarization insensitive single helix silica glass gratings display excellent stability up to temperatures of 6000C, while a pressure sensor with dynamic range of nearly 40 dB is demonstrated in polarization selective double helix gratings.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 855
Permanent link to this record
 

 
Author Shurakov, Alexander; Tong, Edward; Blundell, Raymond; Gol'tsman, Gregory
Title Microwave stabilization of HEB mixer by a microchip controller Type (up) Conference Article
Year 2012 Publication IEEE MTT-S international microwave symposium digest Abbreviated Journal
Volume Issue Pages 1-3
Keywords HEB mixer stability, microwave injection, Allan variance, Allan time
Abstract The stability of a Hot Electron Bolometer (HEB) mixer can be improved by the use of microwave injection. In this article we report a refinement of this approach. We introduce a microchip controller to facilitate the implementation of the stabilization scheme, and demonstrate that the feedback loop effectively suppresses drifts in the HEB bias current, leading to an improvement in the receiver stability. The measured Allan time of the mixer's IF output power is increased to > 10 s.
Address Montreal, QC, Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 857
Permanent link to this record
 

 
Author Khosropanah, P.; Merkel, H.; Yngvesson, S.; Adam, A.; Cherednichenko, S.; Kollberg, E.
Title A distributed device model for phonon-cooled HEB mixers predicting IV characteristics, gain, noise and IF bandwidth Type (up) Conference Article
Year 2000 Publication Proc. 11th Int. Symp. Space Terahertz Technol. Abbreviated Journal
Volume Issue Pages 474-488
Keywords HEB mixer numerical model, diffusion cooling channel, diffusion channel, distributed HEB model, distributed model
Abstract A distributed model for phonon-cooled superconductor hot electron bolometer (HEB) mixers is given, which is based on solving the one-dimensional heat balance equation for the electron temperature profile along the superconductor strip. In this model it is assumed that the LO power is absorbed uniformly along the bridge but the DC power absorption depends on the local resistivity and is thus not uniform. The electron temperature dependence of the resistivity is assumed to be continuous and has a Fermi form. These assumptions are used in setting up the non-linear heat balance equation, which is solved numerically for the electron temperature profile along the bolometer strip. Based on this profile the resistance of the device and the IV curves are calculated. The IV curves are in excellent agreement with measurement results. Using a small signal model the conversion gain of the mixer is obtained. The expressions for Johnson noise and thermal fluctuation noise are derived. The calculated results are in close agreement with measurements, provided that one of the parameters used is adjusted.
Address
Corporate Author Thesis
Publisher Place of Publication University of Michigan, Ann Arbor, MI USA Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 893
Permanent link to this record