toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kahl, O.; Ferrari, S.; Kovalyuk, V.; Vetter, A.; Lewes-Malandrakis, G.; Nebel, C.; Korneev, A.; Goltsman, G.; Pernice, W. doi  openurl
  Title Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits Type (down) Journal Article
  Year 2017 Publication Optica Abbreviated Journal Optica  
  Volume 4 Issue 5 Pages 557-562  
  Keywords Waveguide integrated superconducting single-photon detectors; Nanophotonics and photonic crystals; Quantum detectors; Spectrometers and spectroscopic instrumentation  
  Abstract The detection of individual photons by superconducting nanowire single-photon detectors is an inherently binary mechanism, revealing either their absence or presence while concealing their spectral information. For multicolor imaging techniques, such as single-photon spectroscopy, fluorescence resonance energy transfer microscopy, and fluorescence correlation spectroscopy, wavelength discrimination is essential and mandates spectral separation prior to detection. Here, we adopt an approach borrowed from quantum photonic integration to realize a compact and scalable waveguide-integrated single-photon spectrometer capable of parallel detection on multiple wavelength channels, with temporal resolution below 50 ps and dark count rates below 10 Hz at 80% of the devices' critical current. We demonstrate multidetector devices for telecommunication and visible wavelengths, and showcase their performance by imaging silicon vacancy color centers in diamond nanoclusters. The fully integrated hybrid superconducting nanophotonic circuits enable simultaneous spectroscopy and lifetime mapping for correlative imaging and provide the ingredients for quantum wavelength-division multiplexing on a chip.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ kovalyuk @ Serial 1119  
Permanent link to this record
 

 
Author Arutyunov, K. Y.; Ramos-Alvarez, A.; Semenov, A. V.; Korneeva, Y. P.; An, P. P.; Korneev, A. A.; Murphy, A.; Bezryadin, A.; Gol'tsman, G. N. url  doi
openurl 
  Title Superconductivity in highly disordered NbN nanowires Type (down) Journal Article
  Year 2016 Publication Nanotechnol. Abbreviated Journal Nanotechnol.  
  Volume 27 Issue 47 Pages 47lt02 (1 to 8)  
  Keywords NbN nanowires  
  Abstract The topic of superconductivity in strongly disordered materials has attracted significant attention. These materials appear to be rather promising for fabrication of various nanoscale devices such as bolometers and transition edge sensors of electromagnetic radiation. The vividly debated subject of intrinsic spatial inhomogeneity responsible for the non-Bardeen-Cooper-Schrieffer relation between the superconducting gap and the pairing potential is crucial both for understanding the fundamental issues of superconductivity in highly disordered superconductors, and for the operation of corresponding nanoelectronic devices. Here we report an experimental study of the electron transport properties of narrow NbN nanowires with effective cross sections of the order of the debated inhomogeneity scales. The temperature dependence of the critical current follows the textbook Ginzburg-Landau prediction for the quasi-one-dimensional superconducting channel I c approximately (1-T/T c)(3/2). We find that conventional models based on the the phase slip mechanism provide reasonable fits for the shape of R(T) transitions. Better agreement with R(T) data can be achieved assuming the existence of short 'weak links' with slightly reduced local critical temperature T c. Hence, one may conclude that an 'exotic' intrinsic electronic inhomogeneity either does not exist in our structures, or, if it does exist, it does not affect their resistive state properties, or does not provide any specific impact distinguishable from conventional weak links.  
  Address National Research University Higher School of Economics, Moscow Institute of Electronics and Mathematics,109028, Moscow, Russia. P L Kapitza Institute for Physical Problems RAS, Moscow, 119334, Russia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27782000 Approved no  
  Call Number Serial 1332  
Permanent link to this record
 

 
Author Vorobyov, V. V.; Kazakov, A. Y.; Soshenko, V. V.; Korneev, A. A.; Shalaginov, M. Y.; Bolshedvorskii, S. V.; Sorokin, V. N.; Divochiy, A. V.; Vakhtomin, Y. B.; Smirnov, K. V.; Voronov, B. M.; Shalaev, V. M.; Akimov, A. V.; Goltsman, G. N. url  doi
openurl 
  Title Superconducting detector for visible and near-infrared quantum emitters [Invited] Type (down) Journal Article
  Year 2017 Publication Opt. Mater. Express Abbreviated Journal Opt. Mater. Express  
  Volume 7 Issue 2 Pages 513-526  
  Keywords SSPD, SNSPD  
  Abstract Further development of quantum emitter based communication and sensing applications intrinsically depends on the availability of robust single-photon detectors. Here, we demonstrate a new generation of superconducting single-photon detectors specifically optimized for the 500–1100 nm wavelength range, which overlaps with the emission spectrum of many interesting solid-state atom-like systems, such as nitrogen-vacancy and silicon-vacancy centers in diamond. The fabricated detectors have a wide dynamic range (up to 350 million counts per second), low dark count rate (down to 0.1 counts per second), excellent jitter (62 ps), and the possibility of on-chip integration with a quantum emitter. In addition to performance characterization, we tested the detectors in real experimental conditions involving nanodiamond nitrogen-vacancy emitters enhanced by a hyperbolic metamaterial.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2159-3930 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1234  
Permanent link to this record
 

 
Author Shcherbatenko, M.; Lobanov, Y.; Semenov, A.; Kovalyuk, V.; Korneev, A.; Ozhegov, R.; Kazakov, A.; Voronov, B.M.; Goltsman, G.N. url  doi
openurl 
  Title Potential of a superconducting photon counter for heterodyne detection at the telecommunication wavelength Type (down) Journal Article
  Year 2016 Publication Opt. Express Abbreviated Journal Opt. Express  
  Volume 24 Issue 26 Pages 30474-30484  
  Keywords NbN SSPD mixer, SNSPD  
  Abstract Here, we report on the successful operation of a NbN thin film superconducting nanowire single-photon detector (SNSPD) in a coherent mode (as a mixer) at the telecommunication wavelength of 1550 nm. Providing the local oscillator power of the order of a few picowatts, we were practically able to reach the quantum noise limited sensitivity. The intermediate frequency gain bandwidth (also referred to as response or conversion bandwidth) was limited by the spectral band of a single-photon response pulse of the detector, which is proportional to the detector size. We observed a gain bandwidth of 65 MHz and 140 MHz for 7 x 7 microm2 and 3 x 3 microm2 devices, respectively. A tiny amount of the required local oscillator power and wide gain and noise bandwidths, along with unnecessary low noise amplification, make this technology prominent for various applications, with the possibility for future development of a photon counting heterodyne-born large-scale array.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1094-4087 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28059394 Approved no  
  Call Number Serial 1207  
Permanent link to this record
 

 
Author Peltonen, J. T.; Peng, Z. H.; Korneeva, Yu. P.; Voronov, B. M.; Korneev, A. A.; Semenov, A. V.; Gol'tsman, G. N.; Tsai, J. S; Astafiev, Oleg doi  openurl
  Title Coherent dynamics and decoherence in a superconducting weak link Type (down) Journal Article
  Year 2016 Publication Physic. Rev. B, Abbreviated Journal Physic. Rev. B,  
  Volume 94 Issue Pages 180508  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ akorneev @ Serial 1123  
Permanent link to this record
 

 
Author Lusche, R.; Semenov, A.; Ilin, K.; Siegel, M.; Korneeva, Y.; Trifonov, A.; Korneev, A.; Goltsman, G.; Vodolazov, D.; Hübers, H.-W. url  doi
openurl 
  Title Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors Type (down) Journal Article
  Year 2014 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 116 Issue 4 Pages 043906 (1 to 9)  
  Keywords NbN SSPD, SNSPD, TaN  
  Abstract A thorough spectral study of the intrinsic single-photon detection efficiency in superconducting TaN and NbN nanowires with different widths has been performed. The experiment shows that the cut-off of the intrinsic detection efficiency at near-infrared wavelengths is most likely controlled by the local suppression of the barrier for vortex nucleation around the absorption site. Beyond the cut-off quasi-particle diffusion in combination with spontaneous, thermally activated vortex crossing explains the detection process. For both materials, the reciprocal cut-off wavelength scales linearly with the wire width where the scaling factor agrees with the hot-spot detection model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1357  
Permanent link to this record
 

 
Author Kovalyuk, V.; Ferrari, S.; Kahl, O.; Semenov, A.; Shcherbatenko, M.; Lobanov, Y.; Ozhegov, R.; Korneev, A.; Kaurova, N.; Voronov, B.; Pernice, W.; Gol'tsman, G. doi  openurl
  Title On-chip coherent detection with quantum limited sensitivity Type (down) Journal Article
  Year 2017 Publication Sci Rep Abbreviated Journal Sci Rep  
  Volume 7 Issue 1 Pages 4812  
  Keywords waveguide, SSPD, SNSPD  
  Abstract While single photon detectors provide superior intensity sensitivity, spectral resolution is usually lost after the detection event. Yet for applications in low signal infrared spectroscopy recovering information about the photon's frequency contributions is essential. Here we use highly efficient waveguide integrated superconducting single-photon detectors for on-chip coherent detection. In a single nanophotonic device, we demonstrate both single-photon counting with up to 86% on-chip detection efficiency, as well as heterodyne coherent detection with spectral resolution f/f exceeding 10(11). By mixing a local oscillator with the single photon signal field, we observe frequency modulation at the intermediate frequency with ultra-low local oscillator power in the femto-Watt range. By optimizing the nanowire geometry and the working parameters of the detection scheme, we reach quantum-limited sensitivity. Our approach enables to realize matrix integrated heterodyne nanophotonic devices in the C-band wavelength range, for classical and quantum optics applications where single-photon counting as well as high spectral resolution are required simultaneously.  
  Address National Research University Higher School of Economics, Moscow, 101000, Russia. ggoltsman@hse.ru  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28684752; PMCID:PMC5500578 Approved no  
  Call Number RPLAB @ kovalyuk @ Serial 1129  
Permanent link to this record
 

 
Author Baeva, E. M.; Sidorova, M. V.; Korneev, A. A.; Smirnov, K. V.; Divochy, A. V.; Morozov, P. V.; Zolotov, P. I.; Vakhtomin, Y. B.; Semenov, A. V.; Klapwijk, T. M.; Khrapai, V. S.; Goltsman, G. N. url  doi
openurl 
  Title Thermal properties of NbN single-photon detectors Type (down) Journal Article
  Year 2018 Publication Phys. Rev. Applied Abbreviated Journal Phys. Rev. Applied  
  Volume 10 Issue 6 Pages 064063 (1 to 8)  
  Keywords NbN SSPD, SNSPD  
  Abstract We investigate thermal properties of a NbN single-photon detector capable of unit internal detection efficiency. Using an independent calibration of the coupling losses, we determine the absolute optical power absorbed by the NbN film and, via resistive superconductor thermometry, the temperature dependence of the thermal resistance Z(T) of the NbN film. In principle, this approach permits simultaneous measurement of the electron-phonon and phonon-escape contributions to the energy relaxation, which in our case is ambiguous because of the similar temperature dependencies. We analyze Z(T) with a two-temperature model and impose an upper bound on the ratio of electron and phonon heat capacities in NbN, which is surprisingly close to a recent theoretical lower bound for the same quantity in similar devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1226  
Permanent link to this record
 

 
Author Korneeva, Y. P.; Vodolazov, D. Y.; Semenov, A. V.; Florya, I. N.; Simonov, N.; Baeva, E.; Korneev, A. A.; Goltsman, G. N.; Klapwijk, T. M. url  doi
openurl 
  Title Optical single-photon detection in micrometer-scale NbN bridges Type (down) Journal Article
  Year 2018 Publication Phys. Rev. Applied Abbreviated Journal Phys. Rev. Applied  
  Volume 9 Issue 6 Pages 064037 (1 to 13)  
  Keywords NbN SSPD, SNSPD  
  Abstract We demonstrate experimentally that single-photon detection can be achieved in micrometer-wide NbN bridges, with widths ranging from 0.53 to 5.15  μm and for photon wavelengths of 408 to 1550 nm. The microbridges are biased with a dc current close to the experimental critical current, which is estimated to be about 50% of the theoretically expected depairing current. These results offer an alternative to the standard superconducting single-photon detectors, based on nanometer-scale nanowires implemented in a long meandering structure. The results are consistent with improved theoretical modeling based on the theory of nonequilibrium superconductivity, including the vortex-assisted mechanism of initial dissipation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1303  
Permanent link to this record
 

 
Author Korneev, A.; Korneeva, Y.; Florya, I.; Semenov, A.; Goltsman, G. url  doi
openurl 
  Title Photon switching statistics in multistrip superconducting single-photon detectors Type (down) Journal Article
  Year 2018 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 28 Issue 7 Pages 1-4  
  Keywords SSPD, SNSPD  
  Abstract We study photon count statistics in superconducting single-photon detectors consisting of up to 70 narrow superconducting strips connected in parallel. Using interarrival time analysis, we demonstrate that our samples are operated in the “arm-trigger” regime and require up to seven subsequently absorbed photons to form a resistive state in the whole sample. We also performed numerical simulation of the light and dark count rates versus detector bias current, which are in good agreement with the experimental results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1304  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: