toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cherednichenko, S.; Khosropanah, P.; Adam, A.; Merkel, H. F.; Kollberg, E. L.; Loudkov, D.; Gol'tsman, G. N.; Voronov, B. M.; Richter, H.; Huebers, H.-W. url  doi
openurl 
  Title 1.4- to 1.7-THz NbN hot-electron bolometer mixer for the Herschel space observatory Type (up) Conference Article
  Year 2003 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 4855 Issue Pages 361-370  
  Keywords NbN HEB mixers  
  Abstract NbN hot- electron bolometer mixers have reached the level of 10hv/k in terms of the input noise temperature with the noise bandwidth of 4-6 GHz from subMM band up to 2.5 THz. In this paper we discuss the major characteristics of this kind of receiver, i.e. the gain and the noise bandwidth, the noise temperature in a wide RF band, bias regimes and optimisation of RF coupling to the quasioptical mixer. We present the status of the development of the mixer for Band 6 Low for Herschel Telescope.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Phillips, T.G.; Zmuidzinas, J.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Millimeter and Submillimeter Detectors for Astronomy  
  Notes Approved no  
  Call Number Serial 1521  
Permanent link to this record
 

 
Author Hübers, H.-W.; Semenov, A.; Richter, H.; Birk, M.; Krocka, M.; Mair, U.; Smirnov, K.; Gol’tsman, G.; Voronov, B. url  openurl
  Title Terahertz Heterodyn Receiver with a hot-electron bolometer mixer Type (up) Conference Article
  Year 2002 Publication Far-IR, Sub-mm & MM Detector Technology Workshop Abbreviated Journal Far-IR, Sub-mm & MM Detector Technology Workshop  
  Volume Issue Pages 3-24  
  Keywords NbN HEB mixers  
  Abstract During the past decade major advances have been made regarding low noise mixers for terahertz (THz) heterodyne receivers. State of the art hot-electron-bolometer (HEB) mixers have noise temperatures close to the quantum limit and require less than a µW power from the local oscillator (LO). The technology is now at a point where the performance of a practical receiver employing such mixer, rather than the figures of merit of the mixer itself, are of major concern. We have incorporated a phonon-cooled NbN HEB mixer in a 2.5 THz heterodyne receiver and investigated the performance of the receiver. This yields important information for the development of heterodyne receivers such as GREAT (German receiver for astronomy at THz frequencies aboard SOFIA) [1] and TELIS (Terahertz limb sounder), a balloon borne heterodyne receiver for atmospheric research [2]. Both are currently under development at DLR.  
  Address  
  Corporate Author Thesis  
  Publisher NASA Place of Publication Editor Wolf, U.; Farhoomand, J.; McCreight, C.R.  
  Language Summary Language Original Title  
  Series Editor Series Title NASA CP Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Volume: 211408 Approved no  
  Call Number Serial 1537  
Permanent link to this record
 

 
Author Huebers, H.-W.; Semenov, A.; Schubert, J.; Gol’tsman, G. N.; Voronov, B. M.; Gershenzon, E. M.; Krabbe, A.; Roeser, H.-P. url  doi
openurl 
  Title NbN hot-electron bolometer as THz mixer for SOFIA Type (up) Conference Article
  Year 2000 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 4014 Issue Pages 195-202  
  Keywords NbN HEB mixers, airborne, stratospheric observatory, SOFIA  
  Abstract Heterodyne receivers for applications in astronomy need quantum limited sensitivity. We have investigated phonon- cooled NbN hot electron bolometric mixers in the frequency range from 0.7 THz to 5.2 THz. The devices were 3.5 nm thin films with an in-plane dimension of 1.7 X 0.2 micrometers 2 integrated in a complementary logarithmic spiral antenna. The best measured DSB receiver noise temperatures are 1300 K (0.7 THz), 2000 K (1.4 THz), 2100 K (1.6 THz), 2600 K (2.5 THz), 4000 K (3.1 THz), 5600 K (4.3 THz), and 8800 K (5.2 THz). The sensitivity fluctuation, the long term stability, and the antenna pattern were measured. The results demonstrate that this mixer is very well suited for GREAT, the German heterodyne receiver for SOFIA.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Melugin, R.K.; Roeser, H.-P.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Airborne Telescope Systems  
  Notes Approved no  
  Call Number Serial 1554  
Permanent link to this record
 

 
Author Cherednichenko, S.; Kroug, M.; Yagoubov, P.; Merkel, H.; Kollberg, E.; Yngvesson, K. S.; Voronov, B.; Gol’tsman, G. url  openurl
  Title IF bandwidth of phonon cooled HEB mixers made from NbN films on MgO substrates Type (up) Conference Article
  Year 2000 Publication Proc. 11th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 11th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 219-227  
  Keywords NbN HEB mixers, cinversion gain bandwidth, IF bandwidth  
  Abstract An investigation of gain and noise bandwidth of phonon-cooled hot-electron bolometric (HEB) mixers is presented. The radiation coupling to the mixers is quasioptical through either a spiral or twin-slot antenna. A maximum gain bandwidth of 4.8 GHz is obtained for mixers based on a 3.5 nm thin NbN film with Tc= 10 K. The noise bandwidth is 5.6 GHz, at the moment limited by parasitic elements in the, device mount fixture. At 0.65 THz the DSB receiver noise temperature is 700-800 К in the IF band 1-2 GHz, and 1150-2700 К in the band 3.5-7 GHz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1557  
Permanent link to this record
 

 
Author Yngvesson, K. S.; Gerecht, E.; Musante, C. F.; Zhuang, Y.; Ji, M.; Goyette, T. M.; Dickinson, J. C.; Waldman, J.; Yagoubov, P. A.; Gol’tsman, G. N.; Voronov, B. M.; Gershenzon, E. M. url  doi
openurl 
  Title Low-noise HEB heterodyne receivers and focal plane arrays for the THz regime using NbN Type (up) Conference Article
  Year 1999 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 3795 Issue Pages 357-368  
  Keywords NbN HEB mixers  
  Abstract We have developed prototype HEB receivers using thin film superconducting NbN devices deposited on silicon substrates. The devices are quasi-optically coupled through a silicon lens and a self-complementary log-specific toothed antenna. We measured DSB receiver noise temperatures of 500 K (13 X hf/2k) at 1.56 THz and 1,100 K (20 X hf/2k) at 2.24 THz. Noise temperatures are expected to fall further as devices and quasi-optical coupling methods are being optimized. The measured 3 dB IF conversion gain bandwidth for one device was 3 GHz, and it is estimated that the bandwidth over which the receiver noise temperature is within 3 dB of its minimum value is 6.5 GHz which is sufficient for a number of practical applications. We will discuss our latest results and give a detailed description of our prototype setup and experiments. We will also discuss our plans for developing focal plane arrays with tens of Hot Electron Bolometric mixer elements on a single silicon substrate which will make real time imaging systems in the THz region feasible.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Hwu, R.J.; Wu, K.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Terahertz and Gigahertz Photonics  
  Notes Approved no  
  Call Number Serial 1561  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: