toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fu, K.; Zannoni, R.; Chan, C.; Adams, S. H.; Nicholson, J.; Polizzi, E.; Yngvesson, K. S. url  doi
openurl 
  Title Terahertz detection in single wall carbon nanotubes Type (down) Journal Article
  Year 2008 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.  
  Volume 92 Issue 3 Pages 033105  
  Keywords HEB, single wall, carbon nanotube, CNT, SWNT, SWCNT, terahertz detection, THz  
  Abstract It is reported that terahertz radiation from 0.69 to 2.54 THz has been sensitively detected in a device consisting of bundles of carbon nanotubes containing single wall metallic carbon nanotubes, quasioptically coupled through a lithographically fabricated antenna, and a silicon lens. The measured data are consistent with a bolometric detection process in the metallic tubes and the devices show promise for operation well above 4.2 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes NEP is not shown Approved no  
  Call Number Serial 566  
Permanent link to this record
 

 
Author Siddiqi, I.; Prober, D. E. url  doi
openurl 
  Title Nb–Au bilayer hot-electron bolometers for low-noise THz heterodyne detection Type (down) Journal Article
  Year 2004 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.  
  Volume 84 Issue 8 Pages 1404  
  Keywords HEB, mixers, dynamic range, saturation, LO power, local oscillator power, Nb  
  Abstract The sensitivity of present Nb diffusion-cooled hot-electron bolometer (HEB) mixers is not quantum limited, and can be improved by reducing the superconducting transition temperature TC. Lowering TC reduces thermal fluctuations, resulting in a decrease of the mixer noise temperature TM. However, lower TC mixers have reduced dynamic range and saturate more easily due to background noise. We present 30 GHz microwave measurements on a bilayer HEB system, Nb–Au, in which TC can be tuned with Au layer thickness to obtain the maximum sensitivity for a given noise background. These measurements are intended as a guide for the optimization of THz mixers. Using a Nb–Au mixer with TC = 1.6 K, we obtain TM = 50 K with 2 nW of local oscillator (LO) power. Good mixer performance is observed over a wide range of LO power and bias voltage and such a device should not exhibit saturation in a THz receiver.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 571  
Permanent link to this record
 

 
Author Kawamura, J.; Blundell, R.; Tong, C.-Y. E.; Papa, D. C.; Hunter, T. R.; Paine, S. N.; Patt, F.; Gol'tsman, G.; Cherednichenko, S.; Voronov, B.; Gershenzon, E. url  doi
openurl 
  Title Superconductive hot-electron-bolometer mixer receiver for 800-GHz operation Type (down) Journal Article
  Year 2000 Publication IEEE Trans. Microw. Theory Techn. Abbreviated Journal IEEE Trans. Microw. Theory Techn.  
  Volume 48 Issue 4 Pages 683-689  
  Keywords NbN HEB mixers, LO power, local oscillator power, saturation, linearity, dynamic range  
  Abstract In this paper, we describe a superconductive hot-electron-bolometer mixer receiver designed to operate in the partially transmissive 350-μm atmospheric window. The receiver employs an NbN thin-film microbridge as the mixer element, in which the main cooling mechanism of the hot electrons is through electron-phonon interaction. At a local-oscillator frequency of 808 GHz, the measured double-sideband receiver noise temperature is TRX=970 K, across a 1-GHz intermediate-frequency bandwidth centered at 1.8 GHz. We have measured the linearity of the receiver and the amount of local-oscillator power incident on the mixer for optimal operation, which is PLO≈1 μW. This receiver was used in making observations as a facility instrument at the Heinrich Hertz Telescope, Mt. Graham, AZ, during the 1998-1999 winter observing season.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9480 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ lobanovyury @ Serial 573  
Permanent link to this record
 

 
Author Tong, C.-Y.E.; Meledin, D.V.; Marrone, D.P.; Paine, S.N.; Gibson, H.; Blundell, R. url  doi
openurl 
  Title Near field vector beam measurements at 1 THz Type (down) Journal Article
  Year 2003 Publication IEEE Microw. Compon. Lett. Abbreviated Journal  
  Volume 13 Issue 6 Pages 235-237  
  Keywords HEB, mixer, waveguide, LO power, local oscillator power, saturation effect, dynamic range  
  Abstract We have performed near-field vector beam measurements at 1.03 THz to characterize and align the receiver optics of a superconducting receiver. The signal source is a harmonic generator mounted on an X-Y translation stage. We model the measured two-dimensional complex beam pattern by a fundamental Gaussian mode, from which we derive the position of the beam center, the beam radius and the direction of propagation. By performing scans in the planes separated by 400 mm, we have confirmed that our beam pattern measurements are highly reliable.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1531-1309 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ lobanovyury @ Serial 574  
Permanent link to this record
 

 
Author Wei, Jian; Olaya, David; Karasik, Boris S.; Pereverzev, Sergey V.; Sergeev, Andrei V.; Gershenson, Michael E. url  doi
openurl 
  Title Ultrasensitive hot-electron nanobolometers for terahertz astrophysics Type (down) Journal Article
  Year 2008 Publication Nature Nanotechnology Abbreviated Journal Nature Nanotech  
  Volume 3 Issue 8 Pages 496-500  
  Keywords HEB, Ti/NbN, single terahertz photons, detection  
  Abstract The submillimetre or terahertz region of the electromagnetic spectrum contains approximately half of the total luminosity of the Universe and 98% of all the photons emitted since the Big Bang. This radiation is strongly absorbed in the Earth's atmosphere, so space-based terahertz telescopes are crucial for exploring the evolution of the Universe. Thermal emission from the primary mirrors in these telescopes can be reduced below the level of the cosmic background by active cooling, which expands the range of faint objects that can be observed. However, it will also be necessary to develop bolometers – devices for measuring the energy of electromagnetic radiation—with sensitivities that are at least two orders of magnitude better than the present state of the art. To achieve this sensitivity without sacrificing operating speed, two conditions are required. First, the bolometer should be exceptionally well thermally isolated from the environment;

second, its heat capacity should be sufficiently small. Here we demonstrate that these goals can be achieved by building a superconducting hot-electron nanobolometer. Its design eliminates the energy exchange between hot electrons and the leads by blocking electron outdiffusion and photon emission. The thermal conductance between hot electrons and the thermal bath, controlled by electron–phonon interactions, becomes very small at low temperatures (10-16 WK-1 at 40 mK). These devices, with a heat capacity of 10-19 J K-1, are sufficiently sensitive to detect single terahertz photons in submillimetre astronomy and other applications based on quantum calorimetry and photon counting.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-3387 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 576  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: