|   | 
Details
   web
Records
Author Hajenius, M.; Yang, Z. Q.; Gao, J. R.; Baselmans, J. J. A.; Klapwijk, T. M.; Voronov, B.; Gol'tsman, G.
Title Optimized sensitivity of NbN hot electron bolometer mixers by annealing Type Journal Article
Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 17 Issue 2 Pages 399-402
Keywords NbN HEB mixers
Abstract We report that the heterodyne sensitivity of superconducting hot-electron bolometers (HEBs) increases by 25-30% after annealing at 85degC in high vacuum. The devices studied are twin-slot antenna coupled mixers with a small area NbN bridge of 1 mum times 0.15 mum, above which there is a SiO 2 passivation layer. The mixer noise temperature, gain, and resistance versus temperature curve of a HEB before and after annealing are compared and analysed. We show that the annealing reduces the intrinsic noise of the mixer by 37% and makes the superconducting transition of the bridge and the contacts sharper. We argue that the reduction ofthe noise is mainly due to the improvement of the transparency of the contact/film interface. The lowest receiver noise temperature of 700 K is measured at a local oscillator frequency of 1.63 THz and at a bath temperature of 4.2 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1426
Permanent link to this record
 

 
Author Ryabchun, S.; Tong, C.-Y. E.; Blundell, R.; Kimberk, R.; Gol'tsman, G.
Title Study of the effect of microwave radiation on the operation of HEB mixers in the terahertz frequency range Type Journal Article
Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 17 Issue 2 Pages 391-394
Keywords NbN HEB mixers
Abstract We have investigated the effect of injecting microwave radiation, with a frequency much lower than that corresponding to the energy gap of the superconductor, on the performance of the hot-electron bolometer mixer incorporated into a THz heterodyne receiver. More specifically, we show that exposing the mixer to microwave radiation does not cause a significant rise of the receiver noise temperature and fall of the mixer conversion gain so long as the microwave power is a small fraction of local oscillator power. The injection of a small, but controlled amount of microwave power therefore enables active compensation of local oscillator power and coupling fluctuations which can significantly degrade the gain stability of hot electron bolometer mixer receivers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1427
Permanent link to this record
 

 
Author Svechnikov, S.; Gol'tsman, G.; Voronov, B.; Yagoubov, P.; Cherednichenko, S.; Gershenzon, E.; Belitsky, V.; Ekstrom, H.; Kollberg, E.; Semenov, A.; Gousev, Y.; Renk, K.
Title Spiral antenna NbN hot-electron bolometer mixer at submm frequencies Type Journal Article
Year 1997 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 7 Issue 2 Pages 3395-3398
Keywords NbN HEB mixers
Abstract We have studied the phonon-cooled hot-electron bolometer (HEB) as a quasioptical mixer based on a spiral antenna designed for the 0.3-1 THz frequency band and fabricated on sapphire and high resistivity silicon substrates. HEB devices were produced from superconducting 3.5-5 nm thick NbN films with a critical temperature 10-12 K and a critical current density of approximately 10/sup 7/ A/cm/sup 2/ at 4.2 K. For these devices we reached a DSB receiver noise temperature below 1500 K, a total conversion loss of L/sub t/=16 dB in the 500-700 GHz frequency range, an IF bandwidth of 3-4 GHz and an optimal LO absorbed power of /spl sime/4 /spl mu/W. We experimentally analyzed various contributions to the conversion loss and obtained an RF coupling factor of about 5 dB, internal mixer loss of 10 dB and IF mismatch of 1 dB.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1597
Permanent link to this record
 

 
Author Svechnikov, S. I.; Okunev, O. V.; Yagoubov, P. A.; Gol'tsman, G. N.; Voronov, B. M.; Cherednichenko, S. I.; Gershenzon, E. M.; Gerecht, E.; Musante, C. F.; Wang, Z.; Yngvesson, K. S.
Title 2.5 THz NbN hot electron mixer with integrated tapered slot antenna Type Journal Article
Year 1997 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 7 Issue 2 Pages 3548-3551
Keywords NbN HEB mixers
Abstract A Hot Electron Bolometer (HEB) mixer for 2.5 THz utilizing a NbN thin film device, integrated with a Broken Linearly Tapered Slot Antenna (BLTSA), has been fabricated and is presently being tested. The NbN HEB device and the antenna were fabricated on a SiO2membrane. A 0.5 micrometer thick SiO2layer was grown by rf magnetron reactive sputtering on a GaAs wafer. The HEB device (phonon-cooled type) was produced as several parallel strips, 1 micrometer wide, from an ultrathin NbN film 4-7 nm thick, that was deposited onto the SiO2layer by dc magnetron reactive sputtering. The BLTSA was photoetched in a multilayer Ti-Au metallization. In order to strengthen the membrane, the front-side of the wafer was coated with a 5 micrometer thick polyimide layer just before the membrane formation. The last operation was anisotropic etching of the GaAs in a mixture of HNO3and H2O2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1595
Permanent link to this record
 

 
Author Gousev, Y. P.; Semenov, A. D.; Goghidze, I. G.; Pechen, E. V.; Varlashkin, A. V.; Gol'tsman, G. N.; Gershenzon, E. M.; Renk, K. F.
Title Current dependent noise in a YBa2Cu3O7-δ hot-electron bolometer Type Journal Article
Year 1997 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 7 Issue 2 Pages 3556-3559
Keywords YBCO HTS HEB mixers
Abstract We investigated the output noise of a YBa2Cu3O7-δ (YBCO) superconducting hot-electron bolometer (HEB) in a large frequency range (10 kHz to 8 GHz); the bolometer either consisted of a structured 50 nm thick YBCO film on LaAlO/sub 3/ or a 30 nm thick film on a MgO substrate. We found that flicker noise dominated at low frequencies (below 1 MHz), while at higher frequencies Johnson noise and a current dependent noise were the main noise sources.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1592
Permanent link to this record
 

 
Author Semenov, A. D.; Gousev, Y. P.; Renk, K. F.; Voronov, B. M.; Gol'tsman, G. N.; Gershenzon, E. M.; Schwaab, G.W.; Feinaugle, R.
Title Noise characteristics of a NbN hot-electron mixer at 2.5 THz Type Journal Article
Year 1997 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 7 Issue 2 Pages 3572-3575
Keywords NbN HEB mixers
Abstract The noise temperature of a NbN phonon cooled hot-electron mixer has been measured at a frequency of 2.5 THz for various operating conditions. We obtained for optimal operation a double sideband mixer noise temperature of /spl ap/14000 K and a system conversion loss of /spl ap/23 dB at intermediate frequencies up to 1 GHz. The dependences of the mixer noise temperature on the bias voltage, local oscillator power, and intermediate frequency were consistent with the phenomenological description based on the effective temperature approximation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1594
Permanent link to this record
 

 
Author Shurakov, A.; Seliverstov, S.; Kaurova, N.; Finkel, M.; Voronov, B.; Goltsman, G.
Title Input bandwidth of hot electron bolometer with spiral antenna Type Journal Article
Year 2012 Publication IEEE Trans. THz Sci. Technol. Abbreviated Journal IEEE Trans. THz Sci. Technol.
Volume 2 Issue 4 Pages 400-405
Keywords NbN HEB bolometers bandwidth, log-spiral antenna
Abstract We report the results of our study of the input bandwidth of hot electron bolometers (HEB) embedded into the planar log-spiral antenna. The sensitive element is made of the ultrathin superconducting NbN film patterned as a bridge at the feed of the antenna. The contacts between the antenna and a sensitive element are made from in situ deposited gold (i.e., deposited over NbN film without breaking vacuum), which gives high quality contacts and makes the response of the HEB at higher frequencies less affected by the RF loss. An accurate experimental spectroscopic procedure is demonstrated that leads to the confirmation of the wide ( 8 THz) bandwidth in this antenna coupled device.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2156-342X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1161
Permanent link to this record
 

 
Author Shurakov, A.; Tong, C.-Y. E.; Blundell, R.; Kaurova, N.; Voronov, B.; Gol'tsman, G.
Title Microwave stabilization of a HEB mixer in a pulse-tube cryocooler Type Journal Article
Year 2013 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 23 Issue 3 Pages 1501504-1501504
Keywords NbN HEB mixers
Abstract We report the results of our study of the stability of an 800 GHz hot electron bolometer (HEB) mixer cooled with a pulse-tube cryocooler. Pulse-tube cryocoolers introduce temperature fluctuations as well as mechanical vibrations at a frequency of ~1 Hz, both of which can cause receiver gain fluctuations at that frequency. In our system, the motor of the cryocooler was separated from the cryostat to minimize mechanical vibrations, leaving thermal effects as the dominant source of the receiver gain fluctuations. We measured root mean square temperature variations of the 4 K stage of ~7 mK. The HEB mixer was pumped by a solid state local oscillator at 810 GHz. The root mean square current fluctuations at the low noise operating point (1.50 mV, 56.5 μA) were ~0.12 μA, and were predominantly due to thermal fluctuations. To stabilize the bias current, microwave radiation was injected to the HEB mixer. The injected power level was set by a proportional-integral-derivative controller, which completely compensates for the bias current oscillations induced by the pulse-tube cryocooler. Significant improvement in the Allan variance of the receiver output power was obtained, and an Allan time of 5 s was measured.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1372
Permanent link to this record
 

 
Author Zhang, W.; Miao, W.; Li, S. L.; Zhou, K. M.; Shi, S. C.; Gao, J. R.; Goltsman, G. N.
Title Measurement of the spectral response of spiral-antenna coupled superconducting hot electron bolometers Type Journal Article
Year 2013 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 23 Issue 3 Pages 2300804-2300804
Keywords NbN HEB detector
Abstract Measured spectral response of spiral-antenna coupled superconducting hot electron bolometers (HEBs) often drops dramatically at frequencies that are still within the frequency range of interest (e.g., ~ 5 THz). This is inconsistent with the implied low receiver noise temperatures from the same measurements. To understand this discrepancy, we exhaustively test and calibrate the thermal sources used in Fourier transform spectrometer measurements. We first investigate the absolute emission spectrum of high-pressure Hg arc lamp, then measure the spectral response of two spiral-antenna coupled NbN HEBs with a Martin-Puplett interferometer as spectrometer and 77 K blackbody as broadband signal source. The measured absolute emission spectrum of Hg arc lamp is proportional to frequency, corresponding to an equivalent blackbody temperature of 4000 K at 1 THz, 1500 K at 3 THz, and 800 K at 5 THz, respectively. Measured spectral response of spiral-antenna coupled NbN HEBs, corrected for air absorption, is nearly flat in the frequency range of 0.5-4 THz, consistent with simulated coupling efficiency between HEB and spiral-antenna. These results explain the discrepancy, and prove that spiral-antenna coupled superconducting NbN HEBs work well in a wide frequency range. In addition, this calibration method and these results are broadly applicable to other quasi-optical THz receivers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1371
Permanent link to this record
 

 
Author Trifonov, A.; Tong, C.-Y. E.; Blundell, R.; Ryabchun, S.; Gol'tsman, G.
Title Probing the stability of HEB mixers with microwave injection Type Journal Article
Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 25 Issue 3 Pages 2300404 (1 to 4)
Keywords NbN HEB mixer, stability, Allan-variance
Abstract Using a microwave probe as a tool, we have performed experiments aimed at understanding the origin of the output-power fluctuations in hot-electron-bolometer (HEB) mixers. We use a probe frequency of 1.5 GHz. The microwave probe picks up impedance changes of the HEB, which are examined upon demodulation of the reflected wave outside the cryostat. This study shows that the HEB mixer operates in two different regimes under a terahertz pump. At a low pumping level, strong pulse modulation is observed, as the device switches between the superconducting state and the normal state at a rate of a few megahertz. When pumped much harder, to approximate the low-noise mixer operating point, residual modulation can still be observed, showing that the HEB mixer is intrinsically unstable even in the resistive state. Based on these observations, we introduced a low-frequency termination to the HEB mixer. By terminating the device in a 50-Ω resistor in the megahertz frequency range, we have been able to improve the output-power Allan time of our HEB receiver by a factor of four to about 10 s for a detection bandwidth of 15 MHz, with a corresponding gain fluctuation of about 0.035%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1355
Permanent link to this record