|   | 
Details
   web
Records
Author Elezov, M. S.; Semenov, A. V.; An, P. P.; Tarkhov, M. A.; Goltsman, G. N.; Kardakova, A. I.; Kazakov, A. Y.
Title Investigating the detection regimes of a superconducting single-photon detector Type Journal Article
Year 2013 Publication J. Opt. Technol. Abbreviated Journal J. Opt. Technol.
Volume 80 Issue 7 Pages 435
Keywords SSPD, quantum efficiency
Abstract The detection regimes of a superconducting single-photon detector have been investigated. A technique is proposed for determining the regions in which “pure regimes” predominate. Based on experimental data, the dependences of the internal quantum efficiency on the bias current are determined in the one-, two-, and three-photon detection regimes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1070-9762 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1172
Permanent link to this record
 

 
Author Hübers, H.-W.; Semenov, A.; Richter, H.; Birk, Manfred; Krocka, Michael; Mair, Ulrich; Smirnov, K.; Gol'tsman, G.; Voronov, B.
Title Terahertz heterodyne receiver with a hot-electron bolometer mixer Type Conference Article
Year 2002 Publication Proc. Far-IR, Sub-mm, and mm Detector Technology Workshop Abbreviated Journal Proc. Far-IR, Sub-mm, and mm Detector Technology Workshop
Volume Issue Pages
Keywords NbN HEB mixers
Abstract During the past decade major advances have been made regarding low noise mixers for terahertz (THz) heterodyne receivers. State of the art hot-electron-bolometer (HEB) mixers have noise temperatures close to the quantum limit and require less than a µW power from the local oscillator (LO). The technology is now at a point where the performance of a practical receiver employing such mixer, rather than the figures of merit of the mixer itself, are of major concern. We have incorporated a phonon-cooled NbN HEB mixer in a 2.5 THz heterodyne receiver and investigated the performance of the receiver. This yields important information for the development of heterodyne receivers such as GREAT (German receiver for astronomy at THz frequencies aboard SOFIA)[1] and TELIS (Terahertz limb sounder), a balloon borne heterodyne receiver for atmospheric research [2]. Both are currently under development at DLR.
Address Monterey, CA, USA
Corporate Author Thesis
Publisher Place of Publication Editor Wold, J.; Davidson, J.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 4 pages; Unconfirmed but cited in https://kups.ub.uni-koeln.de/1622/1/bedorf.pdf; There is a Program of the Workshop: https://www.yumpu.com/en/document/view/7411055/far-ir-submm-mm-detector-technology-workshop-sofia-usra (there is no title of this article in the Program); There is also identical publication in Proc. ISSTT (Serial: 332, “A broadband terahertz heterodyne receiver with an NbN HEB mixer”). Approved no
Call Number Serial 1829
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol'tsman, G. N.; Semenov, A. D.; Sergeev, A. V.
Title Heating of electrons in resistive state of superconducting films. Detectors, mixers and switches Type Conference Article
Year 1992 Publication Progress in High Temperature Superconductivity Abbreviated Journal Progress in High Temperature Superconductivity
Volume 32 Issue Pages 190-195
Keywords superconducting films, heating of electrons
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference International Conference on High Temperature Superconductivity and Localization Phenomena , Moscow, Russia , 11 – 15 May 1991
Notes https://books.google.co.kr/books?hl=en&lr=&id=uCI0DwAAQBAJ&oi=fnd&pg=PA190&ots=z7WGjXYWr4&sig=TQ6G6dKsmcj4faYe1ZLw_BFmps8 Approved no
Call Number Serial 1666
Permanent link to this record