toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Finkel, M.; Thierschmann, H.; Galatro, L.; Katan, A. J.; Thoen, D. J.; de Visser, P. J.; Spirito, M.; Klapwijk, T. M. url  doi
openurl 
  Title Performance of THz components based on microstrip PECVD SiNx technology Type Journal Article
  Year 2017 Publication IEEE Trans. THz Sci. Technol. Abbreviated Journal IEEE Trans. THz Sci. Technol.  
  Volume 7 Issue 6 Pages 765-771  
  Keywords transmission line measurements, power transmission lines, dielectrics, couplers, submillimeter wave circuits, coplanar waveguides, micromechanical devices  
  Abstract We present a performance analysis of passive THz components based on Microstrip transmission lines with a 2-μmthin plasma-enhanced chemical vapor deposition grown silicon nitride (PECVD SiNX) dielectric layer. A set of thru-reflect-line calibration structures is used for basic transmission line characterizations. We obtain losses of 9 dB/mm at 300 GHz. Branchline hybrid couplers are realized that exhibit 2.5-dB insertion loss, 1-dB amplitude imbalance, and -26-dB isolation, in agreement with simulations. We use the measured center frequency to determine the dielectric constant of the PECVD SiN x , which yields 5.9. We estimate the wafer-to-wafer variations to be of the order of 1%. Directional couplers are presented which exhibit -12-dB transmission to the coupled port and -26 dB to the isolated port. For transmission lines with 5-μm-thin silicon nitride (SiN x ), we observe losses below 4 dB/mm. The thin SiN x dielectric membrane makes the THz components compatible with scanning probe microscopy cantilevers allowing the application of this technology in on-chip circuits of a THz near-field microscope.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2156-342X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1294  
Permanent link to this record
 

 
Author Klapwijk, T. M.; Semenov, A. V. url  doi
openurl 
  Title Engineering physics of superconducting hot-electron bolometer mixers Type Journal Article
  Year 2017 Publication IEEE Trans. THz Sci. Technol. Abbreviated Journal IEEE Trans. THz Sci. Technol.  
  Volume 7 Issue 6 Pages 627-648  
  Keywords HEB mixers  
  Abstract Superconducting hot-electron bolometers are presently the best performing mixing devices for the frequency range beyond 1.2 THz, where good-quality superconductor-insulator-superconductor devices do not exist. Their physical appearance is very simple: an antenna consisting of a normal metal, sometimes a normal-metal-superconductor bilayer, connected to a thin film of a narrow short superconductor with a high resistivity in the normal state. The device is brought into an optimal operating regime by applying a dc current and a certain amount of local-oscillator power. Despite this technological simplicity, its operation has found to be controlled by many different aspects of superconductivity, all occurring simultaneously. A core ingredient is the understanding that there are two sources of resistance in a superconductor: a charge-conversion resistance occurring at a normal-metal-superconductor interface and a resistance due to time-dependent changes of the superconducting phase. The latter is responsible for the actual mixing process in a nonuniform superconducting environment set up by the bias conditions and the geometry. The present understanding indicates that further improvement needs to be found in the use of other materials with a faster energy relaxation rate. Meanwhile, several empirical parameters have become physically meaningful indicators of the devices, which will facilitate the technological developments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2156-342X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1292  
Permanent link to this record
 

 
Author Tong, C.-Y.E.; Meledin, D.V.; Marrone, D.P.; Paine, S.N.; Gibson, H.; Blundell, R. url  doi
openurl 
  Title Near field vector beam measurements at 1 THz Type Journal Article
  Year 2003 Publication IEEE Microw. Compon. Lett. Abbreviated Journal  
  Volume 13 Issue 6 Pages 235-237  
  Keywords HEB, mixer, waveguide, LO power, local oscillator power, saturation effect, dynamic range  
  Abstract We have performed near-field vector beam measurements at 1.03 THz to characterize and align the receiver optics of a superconducting receiver. The signal source is a harmonic generator mounted on an X-Y translation stage. We model the measured two-dimensional complex beam pattern by a fundamental Gaussian mode, from which we derive the position of the beam center, the beam radius and the direction of propagation. By performing scans in the planes separated by 400 mm, we have confirmed that our beam pattern measurements are highly reliable.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1531-1309 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ lobanovyury @ Serial 574  
Permanent link to this record
 

 
Author Gol'tsman, G.; Minaeva, O.; Korneev, A.; Tarkhov, M.; Rubtsova, I.; Divochiy, A.; Milostnaya, I.; Chulkova, G.; Kaurova, N.; Voronov, B.; Pan, D.; Kitaygorsky, J.; Cross, A.; Pearlman, A.; Komissarov, I.; Slysz, W.; Wegrzecki, M.; Grabiec, P.; Sobolewski, R. url  doi
openurl 
  Title Middle-infrared to visible-light ultrafast superconducting single-photon detectors Type Journal Article
  Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 17 Issue 2 Pages 246-251  
  Keywords SSPD, SNSPD  
  Abstract We present an overview of the state-of-the-art of NbN superconducting single-photon detectors (SSPDs). Our devices exhibit quantum efficiency (QE) of up to 30% in near-infrared wavelength and 0.4% at 5 mum, with a dark-count rate that can be as low as 10 -4 s -1 . The SSPD structures integrated with lambda/4 microcavities achieve a QE of 60% at telecommunication, 1550-nm wavelength. We have also developed a new generation of SSPDs that possess the QE of large-active-area devices, but, simultaneously, are characterized by low kinetic inductance that allows achieving short response times and the GHz-counting rate with picosecond timing jitter. The improvements presented in the SSPD development, such as fiber-coupled SSPDs, make our detectors most attractive for high-speed quantum communications and quantum computing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 431  
Permanent link to this record
 

 
Author Korneev, Alexander; Vachtomin, Yury; Minaeva, Olga; Divochiy, Alexander; Smirnov, Konstantin; Okunev, Oleg; Gol'tsman, Gregory; Zinoni, C.; Chauvin, Nicolas; Balet, Laurent; Marsili, Francesco; Bitauld, David; Alloing, Blandine; Li, Lianhe; Fiore, Andrea; Lunghi, L.; Gerardino, Annamaria; Halder, Matthäus; Jorel, Corentin; Zbinden, Hugo url  doi
openurl 
  Title Single-photon detection system for quantum optics applications Type Journal Article
  Year 2007 Publication IEEE J. Select. Topics Quantum Electron. Abbreviated Journal IEEE J. Select. Topics Quantum Electron.  
  Volume 13 Issue 4 Pages 944-951  
  Keywords SSPD, SNSPD  
  Abstract We describe the design and characterization of a fiber-coupled double-channel single-photon detection system based on superconducting single-photon detectors (SSPD), and its application for quantum optics experiments on semiconductor nanostructures. When operated at 2-K temperature, the system shows 10% quantum efficiency at 1.3-¿m wavelength with dark count rate below 10 counts per second and timing resolution <100 ps. The short recovery time and absence of afterpulsing leads to counting frequencies as high as 40 MHz. Moreover, the low dark count rate allows operation in continuous mode (without gating). These characteristics are very attractive-as compared to InGaAs avalanche photodiodes-for quantum optics experiments at telecommunication wavelengths. We demonstrate the use of the system in time-correlated fluorescence spectroscopy of quantum wells and in the measurement of the intensity correlation function of light emitted by semiconductor quantum dots at 1300 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1077-260X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 430  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: