|   | 
Details
   web
Records
Author Zhang, Jin; Slysz, W.; Verevkin, A.; Okunev, O.; Chulkova, G.; Korneev, A.; Lipatov, A.; Gol'tsman, G. N.; Sobolewski, R.
Title Response time characterization of NbN superconducting single-photon detectors Type Journal Article
Year 2003 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal
Volume 13 Issue 2 Pages 180-183
Keywords SSPD jitter, SNSPD jitter
Abstract We report our time-resolved measurements of NbN-based superconducting single-photon detectors. The structures are meander-type, 10-nm thick, and 200-nm wide stripes and were operated at 4.2 K. We have shown that the NbN devices can count single-photon pulses with below 100-ps time resolution. The response signal pulse width was about 150 ps, and the system jitter was measured to be 35 ps.
Address
Corporate Author Thesis
Publisher IEEE Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1058
Permanent link to this record
 

 
Author Semenov, A. D.; Hübers, Heinz-Wilhelm; Richter, H.; Birk, M.; Krocka, M.; Mair, U.; Vachtomin, Yu. B.; Finkel, M. I.; Antipov, S. V.; Voronov, B. M.; Smirnov, K. V.; Kaurova, N. S.; Drakinski, V. N.; Gol'tsman, G. N.
Title Superconducting hot-electron bolometer mixer for terahertz heterodyne receivers Type Journal Article
Year 2003 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal
Volume 13 Issue 2 Pages 168-171
Keywords NbN HEB mixers
Abstract We present recent results showing the development of superconducting NbN hot-electron bolometer mixer for German receiver for astronomy at terahertz frequencies and terahertz limb sounder. The mixer is incorporated into a planar feed antenna, which has either logarithmic spiral or double-slot configuration, and backed on a silicon lens. The hybrid antenna had almost frequency independent and symmetric radiation pattern slightly broader than expected for a diffraction limited antenna. At 2.5 THz the best 2200 K double side-band receiver noise temperature was achieved across a 1 GHz intermediate frequency bandwidth centred at 1.5 GHz. For this operation regime, a receiver conversion efficiency of -17 dB was directly measured and the loss budget was evaluated. The mixer response was linear at load temperatures smaller than 400 K. Implementation of the MgO buffer layer on Si resulted in an increased 5.2 GHz gain bandwidth. The receiver was tested in the laboratory environment by measuring a methanol emission line at 2.5 THz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 343
Permanent link to this record
 

 
Author Meledin, D.; Tong, C. Y.-E.; Blundell, R.; Kaurova, N.; Smirnov, K.; Voronov, B.; Gol'tsman, G.
Title Study of the IF bandwidth of NbN HEB mixers based on crystalline quartz substrate with an MgO buffer layer Type Journal Article
Year 2003 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 13 Issue 2 Pages 164-167
Keywords NbN HEB mixer
Abstract In this paper, we present the results of IF bandwidth measurements on 3-4 nm thick NbN hot electron bolometer waveguide mixers, which have been fabricated on a 200-nm thick MgO buffer layer deposited on a crystalline quartz substrate. The 3-dB IF bandwidth, measured at an LO frequency of 0.81 THz, is 3.7 GHz at the optimal bias point for low noise receiver operation. We have also made measurements of the IF dynamic impedance, which allow us to evaluate the intrinsic electron temperature relaxation time and self-heating parameters at different bias conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 341
Permanent link to this record
 

 
Author Cao, Aiqin; Jiang, L.; Chen, S.H.; Antipov, S.V.; Shi, S.C.
Title IF gain bandwidth of a quasi-optical NbN superconducting HEB mixer Type Conference Article
Year 2007 Publication Proc. International conference on microwave and millimeter wave technology Abbreviated Journal Proc. ICMMT
Volume Issue Pages 1-3
Keywords HEB, mixer, gain bandwidth
Abstract In this paper, the intermediate frequency (IF) gain bandwidth of a quasi-optical NbN superconducting hot-electron bolometer (HEB) mixer is investigated at 500 GHz with an IF system incorporating with a frequency down-converting scheme which is able to sweep the IF signal in a frequency range of 0.3-4 GHz. The IF gain bandwidth of the device is measured to be 1.5 GHz when it is biased at a voltage of the minimum noise temperature, and becomes larger when the bias voltage increases.
Address
Corporate Author Thesis
Publisher Place of Publication Builin Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ lobanovyury @ Serial 575
Permanent link to this record
 

 
Author Vachtomin, Yu. B.; Antipov, S. V.; Kaurova, N. S.; Maslennikov, S. N.; Smirnov, K. V.; Polyakov, S. L.; Svechnikov, S. I.; Grishina, E. V.; Voronov, B. M.; Gol'tsman, G. N.
Title Noise temperature, gain bandwidth and local oscillator power of NbN phonon-cooled HEB mixer at terahertz frequenciess Type Conference Article
Year 2004 Publication Proc. 29th IRMMW / 12th THz Abbreviated Journal Proc. 29th IRMMW / 12th THz
Volume Issue Pages 329-330
Keywords
Abstract We present the performances of HEB mixers based on 3.5 nm thick NbN film integrated with log-periodic spiral antenna. The double side-band receiver noise temperature values are 1300 K and 3100 K at 2.5 THz and at 3.8 THz, respectively. The gain bandwidth of the mixer is 4.2 GHz and the noise bandwidth is 5 GHz. The local oscillator power is 1-3 /spl mu/W for mixers with different active area.
Address Karlsruhe, Germany
Corporate Author Thesis
Publisher Place of Publication Karlsruhe, Germany Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ nt_ifb_lopow_qoheb_karlsruhe_2004 Serial 354
Permanent link to this record
 

 
Author Cherednichenko, S.; Yagoubov, P.; Il'in, K.; Gol'tsman, G.; Gershenzon, E.
Title Large bandwidth of NbN phonon-cooled hot-electron bolometer mixers Type Conference Article
Year 1997 Publication Proc. 27th Eur. Microwave Conf. Abbreviated Journal
Volume 2 Issue Pages 972-977
Keywords HEB mixer, fabrication process
Abstract The bandwidth of NbN phonon-cooled hot electron bolometer mixers has been systematically investigated with respect to the film thickness and film quality variation. The films, 2.5 to 10 nm thick, were fabricated on sapphire substrates using DC reactive magnetron sputtering. All devices consisted of several parallel strips, each 1 um wide and 2 um long, placed between Ti-Au contact pads. To measure the gain bandwidth we used two identical BWOs operating in the 120-140 GHz frequency range, one functioning as a local oscillator and the other as a signal source. The majority of the measurements were made at an ambient temperature of 4.2 K with optimal LO and DC bias. The maximum 3 dB bandwidth (about 4 GHz) was achieved for the devices made of films which were 2.5-3.5 nm thick, had a high critical temperature, and high critical current density. A theoretical analysis of bandwidth for these mixers based on the two-temperature model gives a good description of the experimental results if one assumes that the electron temperature is equal to the critical temperature.
Address Jerusalem, Israel
Corporate Author Thesis
Publisher IEEE Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 27th Eur. Microwave Conf.
Notes Approved no
Call Number Serial 1075
Permanent link to this record
 

 
Author Kroug, M.; Cherednichenko, S.; Merkel, H.; Kollberg, E.; Voronov, B.; Gol'tsman, G.; Hübers, H. W.; Richter, H.
Title NbN hot electron bolometric mixers for terahertz receivers Type Journal Article
Year 2001 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 11 Issue 1 Pages 962-965
Keywords NbN HEB mixers
Abstract Sensitivity and gain bandwidth measurements of phonon-cooled NbN superconducting hot-electron bolometer mixers are presented. The best receiver noise temperatures are: 700 K at 1.6 THz and 1100 K at 2.5 THz. Parylene as an antireflection coating on silicon has been investigated and used in the optics of the receiver. The dependence of the mixer gain bandwidth (GBW) on the bias voltage has been measured. Starting from low bias voltages, close to operating conditions yielding the lowest noise temperature, the GBW increases towards higher bias voltages, up to three times the initial value. The highest measured GBW is 9 GHz within the same bias range the noise temperature increases by a factor of two.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 312
Permanent link to this record
 

 
Author Kawamura, Jonathan; Blundell, Raymond; Tong, C.-Y. Edward; Papa, D. Cosmo; Hunter, Todd R.; Paine, Scot.t. N.; Patt, Ferdinand; Gol'tsman, Gregory; Cherednichenko, Sergei; Voronov, Boris; Gershenzon, Eugene
Title Superconductive hot-electron bolometer mixer receiver for 800 GHz operation Type Miscellaneous
Year 2000 Publication IEEE Trans. Microwave Theory and Techniques Abbreviated Journal IEEE Trans. Microwave Theory and Techniques
Volume 48 Issue 4 Pages 683-689
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ Kawamura_superconductivehot-electron Serial 424
Permanent link to this record
 

 
Author Beck, M.; Klammer, M.; Lang, S.; Leiderer, P.; Kabanov, V. V.; Gol'tsman, G. N.; Demsar, J.
Title Energy-gap dynamics of superconducting NbN thin films studied by time-resolved terahertz spectroscopy Type Journal Article
Year 2011 Publication Phys. Rev. Lett. Abbreviated Journal Phys. Rev. Lett.
Volume 107 Issue 17 Pages 4
Keywords NbN thin film, energy gap dynamics
Abstract Using time-domain terahertz spectroscopy we performed direct studies of the photoinduced suppression and recovery of the superconducting gap in a conventional BCS superconductor NbN. Both processes are found to be strongly temperature and excitation density dependent. The analysis of the data with the established phenomenological Rothwarf-Taylor model enabled us to determine the bare quasiparticle recombination rate, the Cooper pair-breaking rate and the electron-phonon coupling constant, λ=1.1±0.1, which is in excellent agreement with theoretical estimates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 641
Permanent link to this record
 

 
Author Zubkova, E.; An, P.; Kovalyuk, V.; Korneev, A.; Ferrari, S.; Pernice, W.; Goltsman, G.
Title Integrated Bragg waveguides as an efficient optical notch filter on silicon nitride platform Type Conference Article
Year 2017 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 917 Issue Pages 062042
Keywords Si3N4, Bragg waveguides
Abstract We modeled and fabricated integrated optical Bragg waveguides on a silicon nitride (Si3N4) platform. These waveguides would serve as efficient notch-filters with the desired characteristics. Transmission spectra of the fabricated integrated notch filters have been measured and attenuation at the desired wavelength of 1550 nm down to -43 dB was observed. Performance of the filters has been studied depending on different parameters, such as pitch, filling factor, and height of teeth of the Bragg grating
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ kovalyuk @ Serial 1141
Permanent link to this record