toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Kahl, O.; Ferrari, S.; Kovalyuk, V.; Goltsman, G. N.; Korneev, A.; Pernice, W. H. P. doi  openurl
  Title Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths Type Journal Article
  Year 2015 Publication Sci. Rep. Abbreviated Journal Sci. Rep.  
  Volume 5 Issue Pages 10941 (1 to 11)  
  Keywords optical waveguides; waveguide integrated SSPD; waveguide SSPD; nanophotonics  
  Abstract Superconducting nanowire single-photon detectors (SNSPDs) provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, compatibility with an integrated optical platform is a crucial requirement for applications in emerging quantum photonic technologies. Here we present efficiencies close to unity at 1550nm wavelength. This allows for the SNSPDs to be operated at bias currents far below the critical current where unwanted dark count events reach milli-Hz levels while on-chip detection efficiencies above 70% are maintained. The measured dark count rates correspond to noiseequivalent powers in the 10–19W/Hz–1/2 range and the timing jitter is as low as 35ps. Our detectors are fully scalable and interface directly with waveguide-based optical platforms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes PMID:26061283; PMCID:PMC4462017 Approved no  
  Call Number RPLAB @ kovalyuk @ Serial 946  
Permanent link to this record
 

 
Author Sprengers, J.P.; Gaggero, A.; Sahin, D.; Nejad, S. Jahanmiri; Mattioli, F.; Leoni, R.; Beetz, J.; Lermer, M.; Kamp, M.; Höfling, S.; Sanjines, R.; Fiore A. openurl 
  Title Waveguide single-photon detectors for integrated quantum photonic circuits Type Conference Article
  Year 2011 Publication arXiv Abbreviated Journal arXiv  
  Volume 1108.5107 Issue Pages 1-11  
  Keywords optical waveguides, waveguide SSPD  
  Abstract The generation, manipulation and detection of quantum bits (qubits) encoded on single photons is at the heart of quantum communication and optical quantum information processing. The combination of single-photon sources, passive optical circuits and single-photon detectors enables quantum repeaters and qubit amplifiers, and also forms the basis of all-optical quantum gates and of linear-optics quantum computing. However, the monolithic integration of sources, waveguides and detectors on the same chip, as needed for scaling to meaningful number of qubits, is very challenging, and previous work on quantum photonic circuits has used external sources and detectors. Here we propose an approach to a fully-integrated quantum photonic circuit on a semiconductor chip, and demonstrate a key component of such circuit, a waveguide single-photon detector. Our detectors, based on superconducting nanowires on GaAs ridge waveguides, provide high efficiency (20%) at telecom wavelengths, high timing accuracy (60 ps), response time in the ns range, and are fully compatible with the integration of single-photon sources, passive networks and modulators.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 846  
Permanent link to this record
 

 
Author Sprengers, J. P.; Gaggero, A.; Sahin, D.; Jahanmirinejad, S.; Frucci, G.; Mattioli, F.; Leoni, R.; Beetz, J.; Lermer, M.; Kamp, M.; Höfling, S.; Sanjines, R.; Fiore A. openurl 
  Title Waveguide superconducting single-photon detectors for integrated quantum photonic circuits Type Journal Article
  Year 2011 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.  
  Volume 99 Issue 18 Pages 181110(1-3)  
  Keywords optical waveguides, waveguide SSPD  
  Abstract The monolithic integration of single-photon sources, passive optical circuits, and single-photon detectors enables complex and scalable quantum photonic integrated circuits, for application in linear-optics quantum computing and quantum communications. Here, we demonstrate a key component of such a circuit, a waveguide single-photon detector. Our detectors, based on superconducting nanowires on GaAs ridge waveguides, provide high efficiency (~0%) at telecom wavelengths, high timing accuracy (~0 ps), and response time in the ns range and are fully compatible with the integration of single-photon sources, passive networks, and modulators.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 847  
Permanent link to this record
 

 
Author Lee, B. G.; Assefa, S.; Green, W. M. J.; Min Yang; Schow, C. L.; Jahnes, C. V.; Sheng Zhang; Singer, J.; Kopp, V. I.; Kash, J. A.; Vlasov, Y. A. openurl 
  Title Multichannel high-bandwidth coupling of ultradense silicon photonic waveguide array to standard-pitch fiber array Type Journal Article
  Year 2011 Publication J. Lightwave Technol. Abbreviated Journal  
  Volume 29 Issue 4 Pages 475-482  
  Keywords optical waveguides, from chiralphotonics  
  Abstract A multichannel tapered coupler interfacing standard 250-μm-pitch low-numerical-aperture (NA) polarization-maintaining fiber arrays with ultradense 20- μm-pitch high-NA silicon waveguides is designed and fabricated. The coupler is based on an array of 12 dual-core glass waveguides on 250-μ m pitch that are tapered to a 20- μm pitch, simultaneously providing both pitch and spot-size conversion. At the wide end, the inner core matches the NA and mode profile of standard single-mode fiber. When drawn and tapered, the inner core “vanishes” and the outer core, surrounded by the clad, matches the NA and mode profile of the on-chip photonic waveguide. Ultradense high-efficiency coupling to an array of Si photonic waveguides is demonstrated using a 12-channel polarization-maintaining-fiber pigtailed tapered coupler. Coupling to Si waveguides is facilitated using SiON spot-size converters integrated into the Si photonic IC to provide 2-3-μm mode field diameters compatible with the tapered coupler. The tapered coupler achieves <; 1 dB coupling losses to photonic waveguides. Furthermore, eight-channel coupling is shown with less than -35 dB crosstalk between channels. Finally, a 640-Gb/s wavelength-division-multiplexing signal is coupled into four waveguides occupying 80 μm of chip edge, providing 160-Gb/s per-channel bandwidths.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 849  
Permanent link to this record
 

 
Author Lee, B. G.; Doany, F. E.; Assefa, S.; Green, W.; Yang, M.; Schow, C. L.; Jahnes, C. V.; Zhang, S.; Singer, J.; Kopp, V. I.; Kash, J. A.; Vlasov, Y. A. openurl 
  Title 20-μm-pitch eight-channel monolithic fiber array coupling 160 Gb/s/channel to silicon nanophotonic chip Type Conference Article
  Year 2010 Publication Conf. OFC/NFOEC Abbreviated Journal Conf. OFC/NFOEC  
  Volume Issue Pages 1-3  
  Keywords spot size converters, SSC, optical waveguides, optical fiber waveguides, ultra-dense silicon waveguide arrays, silicon waveguides, waveguide arrays, from chiralphotonics  
  Abstract A multichannel tapered coupler interfacing standard 250-μm-pitch low-NA polarization-maintaining fiber arrays with ultra-dense 20-μm-pitch high-NA silicon waveguides is designed, fabricated, and tested, demonstrating coupling losses below 1 dB and injection bandwidths of 160 Gb/s/channel.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Conference on optical fiber communication, collocated national fiber optic engineers conference  
  Notes Approved no  
  Call Number Serial 852  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: