|   | 
Details
   web
Records
Author Darula, Marian; Semenov, Alex D.; Hübers, Heinz-Wilhelm; Schubert, Josef
Title Quasioptical high-Tc superconductor Josephson mixer at terahertz frequencies Type Abstract
Year 2000 Publication Proc. 11th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 11th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 515
Keywords HTS Josephson mixers
Abstract Mixers based on Josephson junctions from conventional superconductor materials have demonstrated excellent performance at subgap frequencies. The advantages of Josephson mixers are low optimal power of the local oscillator and large intermediate frequency bandwidth but their noise temperature increases dramatically at frequencies corresponding to the energy gap of the superconductor, which is typically below 1 THz for widely used materials. The large energy gap of oxide superconductors makes them promising candidates for development of terahertz Josephson mixers. Here we report on experimental study of the quasioptical mixer utilizing bicrystal Josephson junction from high-transition-temperature YBa 2 Cu 3 O 7-δ film. Junctions with a width of 2 µm were fabricated from 100 nm thick laser ablated films on bicrystal MgO substrates and had the and the J C R n product of about 2 mV at 4.2 K. The planar complementary logarithmic spiral antenna incorporated into co-planar waveguide was patterned from 200 nm thick gold film thermally evaporated in situ on top of the YBa 2 Cu 3 O 7-δ film. The mixer chip was clamped to the extended hemispherical silicon lens. Performance of the mixer was investigated at 4.5 K bath temperature. We used FIR laser as a local oscillator at frequencies 0.698 and 2.52 THz. System noise temperature (DSB) was determined from Y-factor measured with 300 K and 77 K loads. At 0.698 THz the lowest noise temperature 1750 K was observed when the mixer was biased with the fixed current to the region in the vicinity of either the first Shapiro step or the critical current. Between these two bias points the noise temperature increased to ≈ 20000 K. As function of the local oscillator power the noise temperature reached the minimum when the critical current was suppressed to the half of its equilibrium value. Power of the local oscillator absorbed by the mixer at optimal operation was of the order 100 nW. The present design of our antenna limits the upper operation frequency to the value of 1.8 THz. Nevertheless, we clearly observed Shapiro steps at the frequency 2.52 THz. Bearing in mind an improved design of the antenna, we estimate the 3000 K DSB noise temperature at this frequency.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1555
Permanent link to this record
 

 
Author Karasik, B. S.; Elantiev, A. I.
Title Analysis of the noise performance of a hot-electron superconducting bolometer mixer Type Conference Article
Year 1995 Publication Proc. 6th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 6th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 229-246
Keywords HEB mixers
Abstract A theoretical analysis for the noise temperature of hot–electron superconducting mixer has been presented. Thecontributions of both Johnson noise and electron temperature fluctuations have been evaluated. A set of criteriaensuring low noise performance of the mixer has been stated and a simple analytic expression for the noisetemperature of the mixer device has been suggested. It has been shown that an improvement of the mixer sensitivitydoes not necessarily follow by a decrease of the bandwidth. An SSB noise temperature limit due to the intrinsic noisemechanisms has been estimated to be as low as 40–90 K for a mixer device made from Nb or NbN thin film.Furthermore, the conversion gain bandwidth can be as wide as is allowed by the intrinsic electron temperaturerelaxation time if an appropriate choice of the mixer resistance has been made. The intrinsic mixer noise bandwidthis of 3 GHz for Nb device and of 5 GHz for NbN device. An additional improvement of the theory has been madewhen a distinction between the impedance measured at high intermediate frequency (larger than the mixerbandwidth) and the mixer ohmic resistance has been taken into account.Recently obtained experimental data on Nb and NbNbolometer mixer devices are viewed in connection with thetheoretical predictions.The noise temperature limit has also been specified for the mixer device where an outdiffusion coolingmechanism rather than the electron–phonon energy relaxation determines the mixer bandwidth. A consideration ofthe noise performance of a bolometer mixer made from YBaCuO film utilizing a hot–electron effect has been done.
Address
Corporate Author Thesis
Publisher Place of Publication Pasadena, Ca Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 258
Permanent link to this record
 

 
Author Ekström, H.; Karasik, B.; Kollberg, E.; Yngvesson, K. S.
Title Investigation of a superconducting hot electron mixer Type Conference Article
Year 1994 Publication Proc. 5th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 5th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 169-188
Keywords HEB mixers
Abstract Mixing at 20 GHz in niobium superconducting thin film strips in the resistive state is studied. Experiments give evidence that electron-heating is the main cause of the non linear phenomena. The requirements on the mode of operation and on the film parameters for small conversion loss and the possibility of conversion gain are discussed. Measurements indicate a minimum intrinsic conversion loss around 1 dB with a sharp drop for the lowest voltage bias-points, and a DSB mixer noise temperature between 100 and 450 K at 20 GHz. The device output noise temperature at the mixer operating point can be as low as 30-50 K. A simple theory is presented, which is based on the assumption that the small signal resistance is linearly dependent on power. This type of mixer is considered very promising for use in low-noise heterodyne receivers at THz frequencies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1642
Permanent link to this record
 

 
Author Elantev, Andrey I.; Karasik, Boris S.
Title Noise temperature of a superconducting hot-electron mixer Type Conference Article
Year 1994 Publication Proc. 5th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 5th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 225
Keywords HEB mixers
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1645
Permanent link to this record
 

 
Author Lobanov, Y. V.; Vakhtomin, Y. B.; Pentin, I. V.; Khabibullin, R. A.; Shchavruk, N. V.; Smirnov, K. V.; Silaev, A. A.
Title Characterization of the THz quantum cascade laser using fast superconducting hot electron bolometer Type Journal Article
Year 2018 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.
Volume 195 Issue Pages 04004 (1 to 2)
Keywords NbN HEB, QCL
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference 3rd International Conference “Terahertz and Microwave Radiation: Generation, Detection and Applications” (TERA-2018)
Notes Approved no
Call Number Serial 1808
Permanent link to this record
 

 
Author Zolotov, P.; Vakhtomin, Yu.; Divochiy, A.; Morozov, P.; Seleznev, V.; Smirnov, K
Title Development of fast and high-effective single-photon detector for spectrum range up to 2.3 μm Type Conference Article
Year 2017 Publication Proc. SPBOPEN Abbreviated Journal Proc. SPBOPEN
Volume Issue Pages 439-440
Keywords SSPD, SNSPD
Abstract We present the results of development and testing of the single-photon-counting system operating in the wide spectrum rane up to 2.3 mcm. We managed to increase system detection efficiency up to 60% in the range of 1.7-2.3 mcm optimisation of the fabrication methods of superconducting single-photon detectors and application of the single-mode fiber with enlarged core diameter.
Address St. Petersburg, Russia
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1255
Permanent link to this record
 

 
Author Смирнов, К. В.
Title AlGaAs/GaAs смеситель на эффекте разогрева двумерных электронов для тепловизора субмиллиметрового диапазона Type Abstract
Year 2003 Publication Тезисы докладов VI Российской конференции по физике полупроводников Abbreviated Journal
Volume Issue Pages 181
Keywords 2DEG, AlGaAs/GaAs heterostructures, mixer
Abstract
Address ФТИ им. А. Ф. Иоффе, Санк-Петербург
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference VI Российской конференции по физике полупроводников (27-31 октября)
Notes Unconfirmed; Сама конференция, однако, была -- её упоминают: [http://www.nsc.ru/HBC/article.phtml?nid=271&id=17], [https://www.isp.nsc.ru/institut/nauchnye-podrazdeleniya/lab-20/publikatsii/2003], [http://www.ioffe.ru/sem_tech/sem%5Fteh%5Fmovpe%5Fpublications%5Fru.htm#R2003], [https://istina.ips.ac.ru/collections/828771/] Approved no
Call Number Serial 1837
Permanent link to this record
 

 
Author Emelianov, A. V.; Nekrasov, N. P.; Moskotin, M. V.; Fedorov, G. E.; Otero, N.; Romero, P. M.; Nevolin, V. K.; Afinogenov, B. I.; Nasibulin, A. G.; Bobrinetskiy, I. I.
Title Individual SWCNT transistor with photosensitive planar junction induced by two‐photon oxidation Type Journal Article
Year 2021 Publication Adv. Electron. Mater. Abbreviated Journal Adv. Electron. Mater.
Volume 7 Issue 3 Pages 2000872
Keywords SWCNT transistors
Abstract The fabrication of planar junctions in carbon nanomaterials is a promising way to increase the optical sensitivity of optoelectronic nanometer-scale devices in photonic connections, sensors, and photovoltaics. Utilizing a unique lithography approach based on direct femtosecond laser processing, a fast and easy technique for modification of single-walled carbon nanotube (SWCNT) optoelectronic properties through localized two-photon oxidation is developed. It results in a novel approach of quasimetallic to semiconducting nanotube conversion so that metal/semiconductor planar junction is formed via local laser patterning. The fabricated planar junction in the field-effect transistors based on individual SWCNT drastically increases the photoresponse of such devices. The broadband photoresponsivity of the two-photon oxidized structures reaches the value of 2 × 107 A W−1 per single SWCNT at 1 V bias voltage. The SWCNT-based transistors with induced metal/semiconductor planar junction can be applied to detect extremely small light intensities with high spatial resolution in photovoltaics, integrated circuits, and telecommunication applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2199-160X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1843
Permanent link to this record
 

 
Author Бурмистрова, А. В.; Девятов, И. А.
Title Расчет электронного транспорта в гетероструктурах, содержащих многозонные сверхпроводники Type Conference Article
Year 2014 Publication Труды XVIII международного симпозиума «Нанофизика и наноэлектроника» Abbreviated Journal
Volume 1 Issue Pages 21-22
Keywords N/I/Sp junctions
Abstract В рамках приближения сильной связи теоретически рассчитаны проводимости контактов вида нормальный металл/изолятор/одноорбитальный сверхпроводник с p-типом сверхпроводящего спаривания (N/I/Sp). Объяснено наблюдаемое экспериментально как появление пика при нулевом напряжении, так и его расщепление в зависимости от толщины слоя изолятора. В рамках этой же микроскопической теории развит вариант техники решеточной функции Грина в мацубаровом представлении. Используя разработанный подход, рассчитаны фазовые и температурные зависимости тока Джозефсона для контакта сверхпроводника s-типа и многозонного железосодержащего сверхпроводника (ферропниктида) для различных ориентаций границы по отношению к кристаллографическим осям пниктида.
Address Нижний Новгород, Россия
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1834
Permanent link to this record
 

 
Author Sergeev, A.; Karasik, B. S.; Ptitsina, N. G.; Chulkova, G. M.; Il'in, K. S.; Gershenzon, E. M.
Title Electron–phonon interaction in disordered conductors Type Journal Article
Year 1999 Publication Phys. Rev. B Condens. Matter Abbreviated Journal Phys. Rev. B Condens. Matter
Volume 263-264 Issue Pages 190-192
Keywords disordered conductors, electron-phonon interaction
Abstract The electron–phonon interaction is strongly modified in conductors with a small value of the electron mean free path (impure metals, thin films). As a result, the temperature dependencies of both the inelastic electron scattering rate and resistivity differ significantly from those for pure bulk materials. Recent complex measurements have shown that modified dependencies are well described at K by the electron interaction with transverse phonons. At helium temperatures, available data are conflicting, and cannot be described by an universal model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4526 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1765
Permanent link to this record