|   | 
Details
   web
Records
Author Gao, J. R.; Hajenius, M.; Baselmans, J. J. A.; Klapwijk, T. M.; de Korte, P. A. J.; Voronov, B.; Gol'tsman, G.
Title NbN hot electron bolometer mixers with superior performance for space applications Type Conference Article
Year 2004 Publication Proc. Int. workshop on low temp. electronics Abbreviated Journal Proc. Int. workshop on low temp. electronics
Volume Issue Pages 11-17
Keywords NbN HEB mixers, applications
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Noordwijk Editor Armandillo, E.; Leone, B.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference International workshop on low temperature electronics- WOLTE 6 - Noordwijk
Notes Approved no
Call Number Serial 1496
Permanent link to this record
 

 
Author Zhang, W.; Miao, W.; Yao, Q. J.; Lin, Z. H.; Shi, S. C.; Gao, J. R.; Goltsman, G. N.
Title Spectral response and noise temperature of a 2.5 THz spiral antenna coupled NbN HEB mixer Type Journal Article
Year 2012 Publication Phys. Procedia Abbreviated Journal Phys. Procedia
Volume 36 Issue Pages 334-337
Keywords NbN HEB mixer
Abstract We report on a 2.5 THz spiral antenna coupled NbN hot electron bolometer (HEB) mixers, fabricated with in-situ process. The receiver noise temperature with lowest value of 1180 K is in good agreement with calculated quantum efficiency factor as a function of bias voltage. In addition, the measured spectral response of the spiral antenna coupled NbN HEB mixer shows broad frequency coverage of 0.8-3 THz, and corrected response for optical losses, FTS, and coupling efficiency between antenna and bolometer falls with frequency due to diffraction-limited beam of lens/antenna combination.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1875-3892 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1381
Permanent link to this record
 

 
Author Zhang, W.; Miao, W.; Zhong, J. Q.; Shi, S. C.; Hayton, D. J.; Vercruyssen, N.; Gao, J. R.; Goltsman, G. N.
Title Temperature dependence of the receiver noise temperature and IF bandwidth of superconducting hot electron bolometer mixers Type Journal Article
Year 2014 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 27 Issue 8 Pages 085013 (1 to 5)
Keywords NbN HEB mixers
Abstract In this paper we study the temperature dependence of the receiver noise temperature and IF noise bandwidth of superconducting hot electron bolometer (HEB) mixers. Three superconducting NbN HEB devices of different transition temperatures (Tc) are measured at 0.85 THz and 1.4 THz at different bath temperatures (Tbath) between 4 K and 9 K. Measurement results demonstrate that the receiver noise temperature of superconducting NbN HEB devices is nearly constant for Tbath/Tc, less than 0.8, which is consistent with the simulation based on a distributed hot-spot model. In addition, the IF noise bandwidth appears independent of Tbath/Tc, indicating the dominance of phonon cooling in the investigated HEB devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1358
Permanent link to this record
 

 
Author Yang, Z. Q.; Hajenius, M.; Baselmans, J. J. A.; Gao, J. R.; Voronov, B.; Gol’tsman, G. N.
Title Reduced noise in NbN hot-electron bolometer mixers by annealing Type Journal Article
Year 2006 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 19 Issue 4 Pages L (9 to 12)
Keywords NbN HEB mixers
Abstract We find that the sensitivity of heterodyne receivers based on superconducting hot-electron bolometers (HEBs) increases by 25–30% after annealing at 85 °C in vacuum. The devices studied are twin-slot antenna coupled mixers with a small NbN bridge of 1 × 0.15 µm2. We show that annealing changes the device properties as reflected in sharper resistive transitions of the complete device, apparently reducing the device-related noise. The lowest receiver noise temperature of 700 K is measured at a local oscillator frequency of 1.63 THz and a bath temperature of 4.3 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1456
Permanent link to this record
 

 
Author Baselmans, J. J. A.; Hajenius, M.; Gao, J. R.; Baryshev, A.; Kooi, J.; Klapwijk, T. M.; Voronov, B.; de Korte, P.; Gol'tsman, G.
Title NbN hot electron bolometer mixers: sensitivity, LO power, direct detection and stability Type Journal Article
Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 15 Issue 2 Pages 484-489
Keywords HEB mixers, direct detection effect, stability, Allan variance
Abstract We demonstrate that the performance of NbN lattice cooled hot electron bolometer mixers depends strongly on the interface quality between the bolometer and the contact structure. Both the receiver noise temperature and the gain bandwidth can be improved by a factor of 2 by cleaning the interface and adding an additional superconducting interlayer to the contact pad. Using this we obtain a double sideband receiver noise temperature of 950 K at 2.5 THz and 4.3 K, using a 0.4/spl times/4 /spl mu/m HEB mixer with a spiral antenna. At the same bias point, we obtain an IF gain bandwidth of 6 GHz. To comply with current demands on THz mixers for use in space based receivers we reduce the device size to 0.15/spl times/1 /spl mu/m and use a twin slot antenna. We report measurements of the noise temperature, LO power requirement, stability and the direct detection effect, using a mixer with a 1.6 THz twin slot antenna and a 1.462 THz solid state LO source with calibrated output power.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 546
Permanent link to this record