|   | 
Details
   web
Records
Author Ozhegov, R. V.; Smirnov, A. V.; Vakhtomin, Yu. B.; Smirnov, K. V.; Divochiy, A. V.; Goltsman, G. N.
Title Ultrafast superconducting bolometer receivers for terahertz applications Type Abstract
Year 2009 Publication Proc. PIERS Abbreviated Journal Proc. PIERS
Volume Issue Pages 867
Keywords HEB
Abstract The research by the group of Moscow State Pedagogical University into the hot-electron phenomena in thin superconducting films has led to the development of new types of detectors and their use both in fundamental and applied studies. In this paper, we present the results of testing the terahertz HEB receiver systems based on ultrathin (∼ 4 nm) NbN and MoRe detectors with a response time of 50 ps and 1 ns, respectively. We have developed three types of devices which differ in the way a terahertz signal is coupled to the detector and cover the following ranges: 0.3–3 THz, 0.1–30 THz and 25–70 THz. In the case of the receiving system optimized for 0.3–3 THz, the sensitive element (a strip of asuperconductor with planar dimensions of 0.2μm (length) by 1.7μm (width)) was integrated witha planar broadband log-spiral antenna. For additional focusing ofthe incident radiation a silicon hyperhemispherical lens was used. For the 0.1–30 THz receivingsystem, the sensitive element was patterned as parallel strips(2μm wide each) filling an area of 500×500μm2with a filling factor of 0.5. In the receivingsystem of this type we used direct coupling of the incident radiation to the sensitive element. Inthe 25–70 THz range (detector type 2/2a in Table 1) we used a square-shaped superconductingdetector with planar dimensions of 10×10μm2. Incident radiation was coupled to the detectorwith the use of a germanium hyperhemispherical lens.The response time of the above receiving systems is determined by the cooling rate of the hotelectrons in the film. That depends on the electron-phonon interaction time, which is less forultrathin NbN than in MoRe.
Address Moscow, Russia
Corporate Author Thesis
Publisher The Electromagnetics Academy Place of Publication 777 Concord Avenue, Suite 207 Cambridge, MA 02138 Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1559-9450 ISBN 978-1-934142-09-7 Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ sasha @ ozhegovultrafast Serial 1022
Permanent link to this record
 

 
Author Vakhtomin, Y. B.; Finkel, M. I.; Antipov, S. V.; Smirnov, K. V.; Kaurova, N. S.; Drakinskii, V. N.; Voronov, B. M.; Gol’tsman, G. N.
Title The gain bandwidth of mixers based on the electron heating effect in an ultrathin NbN film on a Si substrate with a buffer MgO layer Type Journal Article
Year 2003 Publication J. of communications technol. & electronics Abbreviated Journal J. of communications technol. & electronics
Volume 48 Issue 6 Pages 671-675
Keywords NbN HEB mixers
Abstract Measurements of the intermediate frequency band 900 GHz of mixers based on the electron heating effect (EHE) in 2-nm- and 3.5-nm-thick superconducting NbN films sputtered on MgO and Si substrates with buffer MgO layers are presented. A 2-nm-thick superconducting NbN film with a critical temperature of 9.2 K has been obtained for the first time using a buffer MgO layer.
Address
Corporate Author Thesis
Publisher MAIK Nauka/Interperiodica, Birmingham, AL Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1064-2269 ISBN Medium
Area Expedition Conference
Notes https://elibrary.ru/item.asp?id=17302119 (Полоса преобразования смесителей на эффекте разогрева электронов в ультратонких пленках NbN на подложках из Si с подслоем MgO) Approved no
Call Number Vakhtomin2003 Serial 1522
Permanent link to this record
 

 
Author Селиверстов, С. В.; Финкель, М. И.; Рябчун, С. А.; Воронов, Б. М.; Каурова, Н. С.; Селезнев, В. А.; Смирнов, К. В.; Вахтомин, Ю. Б.; Пентин, И. В.; Гольцман, Г. Н.
Title Терагерцевый сверхпроводниковый детектор с аттоджоулевым энергетическим разрешением и постоянной времени 25 пс Type Conference Article
Year 2014 Publication Труды XVIII международного симпозиума «Нанофизика и наноэлектроника» Abbreviated Journal
Volume 1 Issue Pages 91-92
Keywords NbN HEB
Abstract Представлены результаты измерения энергетического разрешения терагерцевого сверхпроводникового NbN-детектора на эффектеэлектронного разогрева, работающего при температуре около 10 К. Использование инновационной in situ технологии производства привело к существенному улучшению чувствительности детектора. Увеличение быстродействия детектора было достигнуто за счет реализации дополнительного диффузионного канала охла-ждения электронной подсистемы. Измеренное значение эквивалентной мощности шума на частоте 2.5 ТГц составило 2.0×10-13Вт•Гц-0.5, постоянной времени 25 пс. Соответствующее расчетное значение энергетического разрешения составило 2.5 аДж.
Address Нижний Новгород, Россия
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1833
Permanent link to this record
 

 
Author Zhang, W.; Miao, W.; Yao, Q. J.; Lin, Z. H.; Shi, S. C.; Gao, J. R.; Goltsman, G. N.
Title Spectral response and noise temperature of a 2.5 THz spiral antenna coupled NbN HEB mixer Type Journal Article
Year 2012 Publication Phys. Procedia Abbreviated Journal Phys. Procedia
Volume 36 Issue Pages 334-337
Keywords NbN HEB mixer
Abstract We report on a 2.5 THz spiral antenna coupled NbN hot electron bolometer (HEB) mixers, fabricated with in-situ process. The receiver noise temperature with lowest value of 1180 K is in good agreement with calculated quantum efficiency factor as a function of bias voltage. In addition, the measured spectral response of the spiral antenna coupled NbN HEB mixer shows broad frequency coverage of 0.8-3 THz, and corrected response for optical losses, FTS, and coupling efficiency between antenna and bolometer falls with frequency due to diffraction-limited beam of lens/antenna combination.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1875-3892 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1381
Permanent link to this record
 

 
Author Gol'tsman, G. N.
Title Hot electron bolometric mixers: new terahertz technology Type Journal Article
Year 1999 Publication Infrared Physics & Technology Abbreviated Journal Infrared Physics & Technology
Volume 40 Issue 3 Pages 199-206
Keywords NbN HEB mixers
Abstract This paper presents an overview of recent results for NbN phonon-cooled hot electron bolometric (HEB) mixers. The noise temperature of the receivers based on both quasioptical and waveguide versions of HEB mixers has crossed the level of 1 K GHz−1 at 430 GHz (410 K), 600–650 GHz (480 K), 750 GHz (600 K), 810 GHz (780 K) and is close to that level at 1.1 THz (1250 K) and 2.5 THz (4500 K). The gain bandwidth measured for quasioptical HEB mixer at 620 GHz reached 4 GHz and the noise temperature bandwidth was almost 8 GHz. Local oscillator power requirements are about 1 μW for mixers made by photolithography and about 100 nW for mixers made by e-beam lithography. A waveguide version of 800 GHz receiver was installed at the Submillimeter Telescope Observatory on Mt. Graham, AZ, to conduct astronomical observations of known submillimeter lines (CO, J=7→6, CI, J=2→1). It was proved that the receiver works as a practical instrument.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1350-4495 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1570
Permanent link to this record
 

 
Author Hübers, H.-W.; Schubert, J.; Krabbe, A.; Birk, M.; Wagner, G.; Semenov, A.; Gol’tsman, G.; Voronov, B.; Gershenzon, E.
Title Parylene anti-reflection coating of a quasi-optical hot-electron-bolometric mixer at terahertz frequencies Type Journal Article
Year 2001 Publication Infrared Physics & Technology Abbreviated Journal Infrared Physics & Technology
Volume 42 Issue 1 Pages 41-47
Keywords NbN HEB mixers, anti-reflection coating
Abstract Parylene C was investigated as anti-reflection coating for silicon at terahertz frequencies. Measurements with a Fourier-transform spectrometer show that the transmittance of pure silicon can be improved by about 30% when applying a layer of Parylene C with a quarter wavelength optical thickness. The 10% bandwidth of this coating extends from 1.5 to 3 THz for a center frequency of 2.3–2.5 THz, where the transmittance is constant. Heterodyne measurements demonstrate that the noise temperature of a hot-electron-bolometric mixer can be reduced significantly by coating the silicon lens of the hybrid antenna with a quarter wavelength Parylene C layer. Compared to the same mixer with an uncoated lens the improvement is about 30% at a frequency of 2.5 THz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1350-4495 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1548
Permanent link to this record
 

 
Author Gol’tsman, G. N.; Gershenzon, E. M.
Title Phonon-cooled hot-electron bolometric mixer: overview of recent results Type Journal Article
Year 1999 Publication Appl. Supercond. Abbreviated Journal Appl. Supercond.
Volume 6 Issue 10-12 Pages 649-655
Keywords NbN HEB mixers
Abstract The paper presents an overview of recent results for NbN phonon-cooled hot electron bolometric (HEB) mixers. The noise temperature of the receivers based on both quasioptical and waveguide versions of HEB mixer has crossed the level of 1 K·GHz−1 at 430 GHz (410 K) and 600–650 GHz (480 K) and is close to this level at 820 GHz (1100 K) and 900 GHz (980 K). The gain bandwidth measured for quasioptical HEB mixer at 620 GHz reached 4 GHz and the noise temperature bandwidth was almost 8 GHz. Local oscillator power requirements are about 1 μW for mixers made by photolithography and are about 100 nW for mixers made by e-beam lithography. The studies in terahertz receivers based on HEB superconducting mixers now present a dynamic, rapidly developing field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0964-1807 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1564
Permanent link to this record
 

 
Author Semenov, A. D.; Hübers, H.-W.; Richter, H.; Birk, M.; Krocka, M.; Mair, U.; Smirnov, K.; Gol'tsman, G. N.; Voronov, B. M.
Title 2.5 THz heterodyne receiver with NbN hot-electron-bolometer mixer Type Journal Article
Year 2002 Publication Phys. C: Supercond. Abbreviated Journal Phys. C: Supercond.
Volume 372-376 Issue Pages 448-453
Keywords NbN HEB mixers, applications
Abstract We describe a 2.5 THz heterodyne receiver for applications in astronomy and atmospheric research. The receiver employs a superconducting NbN phonon-cooled hot-electron-bolometer mixer and an optically pumped far-infrared gas laser as local oscillator. 2200 K double sideband mixer noise temperature was measured at 2.5 THz across a 1 GHz intermediate frequency bandwidth centred at 1.5 GHz. The total conversion losses were 17 dB. The mixer response was linear at load temperatures smaller than 400 K. The receiver was tested in the laboratory environment by measuring the methanol line in emission. Observed pressure broadening confirms the true heterodyne detection regime of the mixer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1526
Permanent link to this record
 

 
Author Cherednichenko, S.; Kroug, M.; Merkel, H.; Khosropanah, P.; Adam, A.; Kollberg, E.; Loudkov, D.; Gol'tsman, G.; Voronov, B.; Richter, H.; Huebers, H.-W.
Title 1.6 THz heterodyne receiver for the far infrared space telescope Type Journal Article
Year 2002 Publication Phys. C: Supercond. Abbreviated Journal Phys. C: Supercond.
Volume 372-376 Issue Pages 427-431
Keywords NbN HEB mixers, applications
Abstract A low noise heterodyne receiver is being developed for the terahertz range using a phonon-cooled hot-electron bolometric mixer based on 3.5 nm thick superconducting NbN film. In the 1–2 GHz intermediate frequency band the double-sideband receiver noise temperature was 450 K at 0.6 THz, 700 K at 1.6 THz and 1100 K at 2.5 THz. In the 3–8 GHz IF band the lowest receiver noise temperature was 700 K at 0.6 THz, 1500 K at 1.6 THz and 3000 K at 2.5 THz while it increased by a factor of 3 towards 8 GHz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1527
Permanent link to this record
 

 
Author Cherednichenko, S.; Rönnung, F.; Gol'tsman, G.; Kollberg, E.; Winkler, D.
Title YBa2Cu3O7−δ hot-electron bolometer mixer Type Journal Article
Year 2000 Publication Phys. C: Supercond. Abbreviated Journal Phys. C: Supercond.
Volume 341-348 Issue Pages 2653-2654
Keywords YBCO HTS HEB mixers
Abstract We present an investigation of hot-electron bolometric mixer based on YBa2Cu3O7−δ (YBCO) superconducting thin film. Mixer conversion loss, absorbed local oscillator power and intermediate frequency bandwidth was measured at the local oscillator frequency 600 GHz. The fabrication technique for nanoscale YBCO hot-electron bolometer (HEB) mixer integrated into planar antenna structure is described.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1552
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gershenzon, M. E.; Gol'tsman, G. N.; Semyonov, A. D.; Sergeev, A. V.
Title Heating of electrons in superconductor in the resistive state due to electromagnetic radiation Type Journal Article
Year 1984 Publication Solid State Communications Abbreviated Journal Solid State Communications
Volume 50 Issue 3 Pages 207-212
Keywords Nb HEB
Abstract The effect of heating electrons with respect to phonons in a thin superconducting film driven into the resistive state by the current and the external magnetic field has been observed and investigated. This effect caused by the electromagnetic radiation is manifested in the increased resistance of the film and is not selective over the frequency range from 1010 to 1015 Hz. That the effect is frequency independent under the conditions of strong electron scattering caused by static defects is explained by the decisive role of electron -electron collisions in forming the distribution function. The characteristic time of resistance change, obtained experimentally, corresponds to the relaxation time of the order parameter near the superconducting transition and to the relaxation time of the nonelastic electron-phonon interaction at lower temperatures and in lower magnetic fields.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1098 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1709
Permanent link to this record
 

 
Author Gol'tsman, G. N.; Loudkov, D. N.
Title Terahertz superconducting hot-electron bolometer mixers and their application in radio astronomy Type Journal Article
Year 2003 Publication Radiophys. Quant. Electron. Abbreviated Journal
Volume 46 Issue 8/9 Pages 604-617
Keywords NbN HEB mixers
Abstract We review the latest developments, research, and radioastronomy applications of hot-electron bolometer (HEB) mixers operated in the terahertz waveband. The physical principles of operation of terahertz HEB mixers are presented, their manufacturing from ultrathin NbN films, the main HEB-mixer parameters and their measurement techniques are discussed, and practical terahertz radioastronomy projects based on heterodyne receivers with HEB mixers are considered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0033-8443 ISBN Medium
Area Expedition Conference
Notes UDC 537.312.62 Approved no
Call Number Serial 472
Permanent link to this record
 

 
Author Sidorova, M.; Semenov, Alexej D.; Hübers, H.-W.; Ilin, K.; Siegel, M.; Charaev, I.; Moshkova, M.; Kaurova, N.; Goltsman, G. N.; Zhang, X.; Schilling, A.
Title Electron energy relaxation in disordered superconducting NbN films Type Journal Article
Year 2020 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 102 Issue 5 Pages 054501 (1 to 15)
Keywords NbN SSPD, SNSPD, HEB, bandwidth, relaxation time
Abstract We report on the inelastic-scattering rate of electrons on phonons and relaxation of electron energy studied by means of magnetoconductance, and photoresponse, respectively, in a series of strongly disordered superconducting NbN films. The studied films with thicknesses in the range from 3 to 33 nm are characterized by different Ioffe-Regel parameters but an almost constant product qTl (qT is the wave vector of thermal phonons and l is the elastic mean free path of electrons). In the temperature range 14–30 K, the electron-phonon scattering rates obey temperature dependencies close to the power law 1/τe−ph∼Tn with the exponents n≈3.2–3.8. We found that in this temperature range τe−ph and n of studied films vary weakly with the thickness and square resistance. At 10 K electron-phonon scattering times are in the range 11.9–17.5 ps. The data extracted from magnetoconductance measurements were used to describe the experimental photoresponse with the two-temperature model. For thick films, the photoresponse is reasonably well described without fitting parameters, however, for thinner films, the fit requires a smaller heat capacity of phonons. We attribute this finding to the reduced density of phonon states in thin films at low temperatures. We also show that the estimated Debye temperature in the studied NbN films is noticeably smaller than in bulk material.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1266
Permanent link to this record
 

 
Author Смирнов, Константин Владимирович; Вахтомин, Юрий Борисович; Смирнов, Андрей Владимирович; Ожегов, Роман Викторович; Пентин, Иван Викторович; Дивочий, Александр Валерьевич; Сливинская, Елизавета Вячеславовна; Гольцман, Григорий Наумович
Title Приемники терагерцового и инфракрасного диапазонов, основанные на тонкопленочных сверхпроводниковых наноструктурах Type Journal Article
Year 2010 Publication Вестник НГУ. Серия: Физика Abbreviated Journal Вестник НГУ. Серия: Физика
Volume 5 Issue 4 Pages
Keywords HEB, SSPD, SNSPD
Abstract В работе представлены результаты разработки и создания чувствительных и ультрабыстрых приемников, основанных на тонкопленочных сверхпроводниковых наноструктурах: болометрах на эффекте электронного разогрева (HEB – hot-electron bolometer) и детекторах одиночных фотонов видимого и инфракрасного диапазонов волн (SSPD – superconducting singe-photon detector). Представлены основные принципы работы сверхпроводниковых устройств, технология создания и конструкционные особенности приемников, их основные типы и характеристики. Достигнутые рекордные значения параметров приемных систем позволяют использовать созданные приборы при решении различных научно-исследовательских задач в ближнем, среднем и дальнем ИК диапазонах волн.

This work presents the results of the development and fabrication of sensitive and ultrafast detectorsbased on thin film superconducting nanostructures: hot-electron bolometers (HEBs) and visible and infrared superconducting singe photon detectors (SSPDs). The main operational principles of the superconducting devices are presentedas well as the technology of fabrication of the detectors and their main types and parameters. The achieved record parameters of the detectors allow application of the fabricated devices to solution of various research problems in the near, middle and far IR ranges.
Address
Corporate Author Thesis
Publisher Новосибирский государственный университет Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Физика Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1818-7994 ISBN Medium
Area Expedition Conference
Notes УДК 538.9 Approved no
Call Number RPLAB @ sasha @ смирнов2010приемники Serial 1033
Permanent link to this record
 

 
Author Смирнов, А. В.; Карманцов, М. С.; Смирнов, К. В.; Вахтомин, Ю. Б.; Мастеров, Д. В.; Тархов, М. А.; Павлов, С. А.; Парафин, А. Е.
Title Терагерцовый отклик болометров на основе тонких пленок YBCO Type Journal Article
Year 2012 Publication ЖТФ Abbreviated Journal ЖТФ
Volume 82 Issue 12 Pages 108-111
Keywords YBCO HEB NEP
Abstract Представлены первые результаты измерения болометрического отклика высокотемпературных сверхпроводниковых детекторов на основе тонких пленок YBCO на электромагнитное излучение с частотой 2.5 THz. Минимальное значение оптической мощности, эквивалентной шуму созданных детекторов, составило 3.5· 10-9 W/sqrt(Hz)sqrt. Обсуждена возможность дальнейшего увеличения чувствительности исследуемых детекторов.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1825
Permanent link to this record
 

 
Author Gol'tsman, G. N.; Semenov, A. D.; Gousev, Y. P.; Zorin, M. A.; Gogidze, I. G.; Gershenzon, E. M.; Lang, P. T.; Knott, W. J.; Renk, K. F.
Title Sensitive picosecond NbN detector for radiation from millimetre wavelengths to visible light Type Journal Article
Year 1991 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 4 Issue 9 Pages 453-456
Keywords NbN HEB detectors
Abstract The authors report on the application of a broad-band NbN film detector which has high sensitivity and picosecond response time for detection of radiation from millimetre wavelengths to visible light. From a study of amplitude modulated radiation of backward-wave tubes and picosecond pulses from gas and solid state lasers at wavelengths between 2 mm and 0.53 mu m, they found a detectivity of 1010 W-1 cm Hz-1/2 and a response time of less than 50 ps at T=10 K. The characteristics were provided by using a 150 AA thick NbN film patterned into a structure of micron strips. According to the proposed detection mechanism, namely electron heating, they expect an intrinsic response time of approximately 20 ps at the same temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 242
Permanent link to this record
 

 
Author Shurakov, A.; Lobanov, Y.; Goltsman, G.
Title Superconducting hot-electron bolometer: from the discovery of hot-electron phenomena to practical applications Type Journal Article
Year 2015 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 29 Issue 2 Pages 023001
Keywords HEB
Abstract The discovery of hot-electron phenomena in a thin superconducting film in the last century was followed by numerous experimental studies of its appearance in different materials aiming for a better understanding of the phenomena and consequent implementation of terahertz detection systems for practical applications. In contrast to the competitors such as superconductor-insulator-superconductor tunnel junctions and Schottky diodes, the hot electron bolometer (HEB) did not demonstrate any frequency limitation of the detection mechanism. The latter, in conjunction with a decent performance, rapidly made the HEB mixer the most attractive candidate for heterodyne observations at frequencies above 1 THz. The successful operation of practical instruments (the Heinrich Hertz Telescope, the Receiver Lab Telescope, APEX, SOFIA, Hershel) ensures the importance of the HEB technology despite the lack of rigorous theoretical routine for predicting the performance. In this review, we provide a summary of experimental and theoretical studies devoted to understanding the HEB physics, and an overview of various fabrication routes and materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1156
Permanent link to this record
 

 
Author Zhang, W.; Miao, W.; Zhong, J. Q.; Shi, S. C.; Hayton, D. J.; Vercruyssen, N.; Gao, J. R.; Goltsman, G. N.
Title Temperature dependence of the receiver noise temperature and IF bandwidth of superconducting hot electron bolometer mixers Type Journal Article
Year 2014 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 27 Issue 8 Pages 085013 (1 to 5)
Keywords NbN HEB mixers
Abstract In this paper we study the temperature dependence of the receiver noise temperature and IF noise bandwidth of superconducting hot electron bolometer (HEB) mixers. Three superconducting NbN HEB devices of different transition temperatures (Tc) are measured at 0.85 THz and 1.4 THz at different bath temperatures (Tbath) between 4 K and 9 K. Measurement results demonstrate that the receiver noise temperature of superconducting NbN HEB devices is nearly constant for Tbath/Tc, less than 0.8, which is consistent with the simulation based on a distributed hot-spot model. In addition, the IF noise bandwidth appears independent of Tbath/Tc, indicating the dominance of phonon cooling in the investigated HEB devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1358
Permanent link to this record
 

 
Author Yang, Z. Q.; Hajenius, M.; Baselmans, J. J. A.; Gao, J. R.; Voronov, B.; Gol’tsman, G. N.
Title Reduced noise in NbN hot-electron bolometer mixers by annealing Type Journal Article
Year 2006 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 19 Issue 4 Pages L (9 to 12)
Keywords NbN HEB mixers
Abstract We find that the sensitivity of heterodyne receivers based on superconducting hot-electron bolometers (HEBs) increases by 25–30% after annealing at 85 °C in vacuum. The devices studied are twin-slot antenna coupled mixers with a small NbN bridge of 1 × 0.15 µm2. We show that annealing changes the device properties as reflected in sharper resistive transitions of the complete device, apparently reducing the device-related noise. The lowest receiver noise temperature of 700 K is measured at a local oscillator frequency of 1.63 THz and a bath temperature of 4.3 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1456
Permanent link to this record
 

 
Author Yagoubov, Pavel; Kroug, Matthias; Merkel, Harald; Kollberg, Erik; Schubert, Josef; Hübers, Heinz-Wilhelm
Title NbN hot electron bolometric mixers at frequencies between 0.7 and 3.1 THz Type Journal Article
Year 1999 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 12 Issue 11 Pages 989-991
Keywords NbN HEB mixers
Abstract The performance of NbN-based phonon-cooled hot electron bolometric (HEB) quasioptical mixers is investigated in the 0.7-3.1 THz frequency range. The devices are made from a 3.5-4 nm thick NbN film on high resistivity Si and integrated with a planar spiral antenna on the same substrate. The length of the bolometer microbridge is 0.1-0.2 µm; the width is 1-2 µm. The best results of the DSB receiver noise temperature measured at 1.5 GHz intermediate frequency are: 800 K at 0.7 THz, 1100 K at 1.6 THz, 2000 K at 2.5 THz and 4200 K at 3.1 THz. The measurements were performed with a far infrared laser as the local oscillator (LO) source. The estimated LO power requirement is less than 500 nW at the receiver input. First results on spiral antenna polarization measurements are reported.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 295
Permanent link to this record
 

 
Author Rönnung, F.; Cherednichenko, S.; Winkler, D.; Gol'tsman, G. N.
Title A nanoscale YBCO mixer optically coupled with a bow tie antenna Type Journal Article
Year 1999 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 12 Issue 11 Pages 853-855
Keywords YBCO HTS HEB mixers
Abstract The bolometric response of YBa2Cu3O7-δ(YBCO) hot-electron bolometers (HEBs) to near-infrared radiation was studied. Devices were fabricated from a 50 nm thick film and had in-plane areas of 10 × 10 µm2, 2 × 0.2 µm2, 1 × 0.2µm2 and 0.5 × 0.2 µm2. We found that nonequilibrium phonons cool down more effectively for the bolometers with smaller area. For the smallest bolometer the bolometric component in the response is 10 dB less than for the largest one.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1563
Permanent link to this record
 

 
Author Zhang, Wen; Li, Ning; Jiang, Ling; Miao, Wei; Lin, Zhen-Hui; Yao, Qi-Jun; Shi, Sheng-Cai; Chen, Jian; Wu, Pei-Heng; Svechnikov, S. I.; Vachtomin, Y. B.; Antipov, S. V.; Voronov, B. M.; Gol'tsman, G. N.
Title Noise behaviour of a THz superconducting hot-electron bolometer mixer Type Journal Article
Year 2007 Publication Chinese Phys. Lett. Abbreviated Journal Chinese Phys. Lett.
Volume 24 Issue 6 Pages 1778-1781
Keywords NbN HEB mixers
Abstract A quasi-optical superconducting NbN hot-electron bolometer (HEB) mixer is measured in the frequency range of 0.5–2.5 THz for understanding of the frequency dependence of noise temperature of THz coherent detectors. It has been found that noise temperature increasing with frequency is mainly due to the coupling loss between the quasi-optical planar antenna and the superconducting HEB bridge when taking account of non-uniform distribution of high-frequency current. With the coupling loss corrected, the superconducting HEB mixer demonstrates a noise temperature nearly independent of frequency.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0256-307X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1430
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol'tsman, G. N.; Karasik, B. S.; Lugovaya, G. Ya.; Serebryakova, N. A.; Chinkova, E. V.
Title Infrared radiation detectors on the base of electron heating in resistive state films from traditional superconducing materials Type Journal Article
Year 1992 Publication Sverkhprovodimost': Fizika, Khimiya, Tekhnika Abbreviated Journal Sverkhprovodimost': Fizika, Khimiya, Tekhnika
Volume 5 Issue 6 Pages 1129-1140
Keywords IR HEB detectors
Abstract Characteristics of infrared radiation detectors based on electron heating in thin superconducting films transformed at T ≤ Tc to a resistive state by transport current and, if necessary, by magnetic field are investigated. A comparison is made of the characteristics of the detectors fabricated of different materials: aluminium, niobium, Mo0.5Re0.5. Some devices with different topology of the reception area are considered. Electron heating detectors are comparable by their sensitivity with superconducting bolometers, but differ in a high fast-response.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0131-5366 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1673
Permanent link to this record
 

 
Author Voronov, B. M.; Gershenzon, E. M.; Gol'tsman, G. N.; Gogidze, I. G.; Gusev, Yu. P.; Zorin, M. A.; Sejdman, L. A.; Semenov, A. D.
Title Picosecond range detector base on superconducting niobium nitride film sensitive to radiation in spectral range from millimeter waves up to visible light Type Journal Article
Year 1992 Publication Sverkhprovodimost': Fizika, Khimiya, Tekhnika Abbreviated Journal Sverkhprovodimost': Fizika, Khimiya, Tekhnika
Volume 5 Issue 5 Pages 955-960
Keywords NbN HEB detectors
Abstract Fast-operating picosecond detector of electromagnetical radiation is developed on the basis of fine superconducting film of niobium nitride with high sensitivity within spectral range from millimetric waves up to visible light. Detector sensitive element represents structure covering narrow parallel strips with micron sizes included in the rupture of microstrip line. Detecting ability of the detector and time constant measured using amplitude-simulated radiation of reverse wave tubes and pulse radiation of picosecond gas and solid-body lasers, constitute D*≅1010 W-1·cm·Hz-1/2 and τ≤5 ps respectively, at 10 K temperature. The expected value of time constant of the detector at 10 K obtained via extrapolation of directly measured dependence that is, τ ∝ τ-1, constitutes 20 ps. Experimental data demonstrate that detection mechanism is linked with electron heating effect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0131-5366 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1670
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol'tsman, G. N.; Gogidze, I. G.; Gusev, Yu. P.; Elantiev, A. I.; Karasik, B. S.; Semenov, A. D.
Title Millimeter and submillimeter wave range mixer based on electronic heating of superconducting films in the resistive state Type Journal Article
Year 1990 Publication Sov. Supercond. Abbreviated Journal Sov. Supercond.
Volume 3 Issue 10 Pages 1582-1597
Keywords HEB mixers
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 240
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol'tsman, G. N.; Zorin, M. A.; Karasik, B. S.; Trifonov, V. A.
Title Nonequilibrium and bolometric response of YBaCuO films in a resistive state to infrared low intensity radiation Type Conference Article
Year 1994 Publication Council on Low-temp. Phys. Abbreviated Journal Council on Low-temp. Phys.
Volume Issue Pages 82-83
Keywords YBCO HTS HEB
Abstract
Address Dubna
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Joint Inst. for Nuclear Research, Dubna (Russian Federation); 296 p; 1994; p. 82-83; 30. Conference on low-temperature physics; 30. Soveshchanie po fizike nizkikh temperatur; Dubna (Russian Federation); 6-8 Sep 1994
Notes Неравновесный и болометрический отклик YBaCuO пленок в резиотивном состоянии на инфракрасное лазерное излучение малой интенсивности Approved no
Call Number Serial 1632
Permanent link to this record
 

 
Author Schwaab, G.W.; Sirmain, G.; Schubert, J.; Hubers, H.-W.; Gol'tsman, G.; Cherednichenko, S.; Verevkin, A.; Voronov, B.; Gershenzon, E.
Title Investigation of NbN phonon-cooled HEB mixers at 2.5 THz Type Journal Article
Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 9 Issue 2 Pages 4233-4236
Keywords NbN HEB mixers
Abstract The development of superconducting hot electron bolometric (HEB) mixers has been a big step forward in the direction of quantum noise limited mixer performance at THz frequencies. Such mixers are crucial for the upcoming generation of airborne and spaceborne THz heterodyne receivers. In this paper we report on new results on a phonon-cooled NbN HEB mixer using e-beam lithography. The superconducting film is 3 nm thick. The mixer is 0.2 μm long and 1.5 μm wide and it is integrated in a spiral antenna on a Si substrate. The device is quasi-optically coupled through a Si lens and a dielectric beam combiner to the radiation of an optically pumped FIR ring gas laser cavity. The performance of the mixer at different THz frequencies from 0.69 to 2.55 THz with an emphasis on 2.52 THz is demonstrated. At 2.52 THz minimum DSB noise temperatures of 4200 K have been achieved at an IF of 1.5 GHz and a bandwidth of 40 MHz with the mixer mounted in a cryostat and a 0.8 m long signal path in air.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 550
Permanent link to this record
 

 
Author Jiang, L.; Antipov, S. V.; Voronov, B. M.; Gol'tsman, G. N.; Zhang, W.; Li, N.; Lin, Z. H.; Yao, Q. J.; Miao, W.; Shi, S. C.; Svechnikov, S. I.; Vakhtomin, Y. B.
Title Characterization of the performance of a quasi-optical NbN superconducting HEB mixer Type Journal Article
Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 17 Issue 2 Pages 395-398
Keywords NbN HEB mixers, noise temperature
Abstract In this paper we focus mainly on the investigation of the performance of a quasi-optical (planar log-spiral antenna) phonon-cooled NbN superconducting hot electron bolometer (HEB) mixer, which is cryogenically cooled by a close-cycled 4-K cryocooler, at 500 and 850 GHz frequency bands. The mixer's noise performance, stability of IF output power, and local oscillator (LO) power requirement are characterized for three NbN superconducting HEB devices of different sizes. The transmission characteristics of Mylar and Zitex films with incidence waves of an elliptical polarization are also examined by measuring the mixer's noise temperature. The lowest receiver noise temperatures (with no corrections) of 750 and 1100 K are measured at 500 and 850 GHz, respectively. Experimental results also demonstrate that the bigger the HEB device is, the higher the stability of IF output power becomes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1429
Permanent link to this record
 

 
Author Baselmans, J. J. A.; Hajenius, M.; Gao, J. R.; Baryshev, A.; Kooi, J.; Klapwijk, T. M.; Voronov, B.; de Korte, P.; Gol'tsman, G.
Title NbN hot electron bolometer mixers: sensitivity, LO power, direct detection and stability Type Journal Article
Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 15 Issue 2 Pages 484-489
Keywords HEB mixers, direct detection effect, stability, Allan variance
Abstract We demonstrate that the performance of NbN lattice cooled hot electron bolometer mixers depends strongly on the interface quality between the bolometer and the contact structure. Both the receiver noise temperature and the gain bandwidth can be improved by a factor of 2 by cleaning the interface and adding an additional superconducting interlayer to the contact pad. Using this we obtain a double sideband receiver noise temperature of 950 K at 2.5 THz and 4.3 K, using a 0.4/spl times/4 /spl mu/m HEB mixer with a spiral antenna. At the same bias point, we obtain an IF gain bandwidth of 6 GHz. To comply with current demands on THz mixers for use in space based receivers we reduce the device size to 0.15/spl times/1 /spl mu/m and use a twin slot antenna. We report measurements of the noise temperature, LO power requirement, stability and the direct detection effect, using a mixer with a 1.6 THz twin slot antenna and a 1.462 THz solid state LO source with calibrated output power.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 546
Permanent link to this record
 

 
Author Kawamura, J. H.; Tong, C.-Y.E.; Blundell, R.; Cosmo Papa, D.; Hunter, T. R.; Gol'tsman, G.; Cherednichenko, S.; Voronov, B.; Gershenzon, E.
Title An 800 GHz NbN phonon-cooled hot-electron bolometer mixer receiver Type Journal Article
Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 9 Issue 2 Pages 3753-3756
Keywords NbN HEB mixers
Abstract We describe a heterodyne receiver developed for astronomical applications to operate in the 350 /spl mu/m atmospheric window. The waveguide receiver employs a superconductive NbN phonon-cooled hot-electron bolometer mixer. The double sideband receiver noise temperature closely follows 1 kGHz/sup -1/ across 780-870 GHz, with the intermediate frequency centered at 1.4 GHz. The conversion loss is about 15 dB. The receiver was installed for operation at the University of Arizona/Max Planck Institute for Radio Astronomy Submillimeter Telescope facility. The instrument was successfully used to conduct test observations of a number of celestial sources in a number of astronomically important spectral lines.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 288
Permanent link to this record
 

 
Author Smirnov, K. V.; Vakhtomin, Yu. B.; Divochiy, A. V.; Ozhegov, R. V.; Pentin, I. V.; Gol'tsman, G. N.
Title Infrared and terahertz detectors on basis of superconducting nanostructures Type Conference Article
Year 2010 Publication Microwave and Telecom. Technol. (CriMiCo), 20th Int. Crimean Conf. Abbreviated Journal
Volume Issue Pages 823-824
Keywords SSPD, SNSPD, HEB
Abstract Results of development of single-photon receiving systems of visible, infrared and terahertz range based on thin-film superconducting nanostructures are presented. The receiving systems are produced on the basis of superconducting nanostructures, which function by means of hot-electron phenomena.
Address
Corporate Author Thesis
Publisher Place of Publication Editor IEEE
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ sasha @ smirnov2010infrared Serial 1025
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol'tsman, G. N.; Elantiev, A. I.; Karasik, B. S.; Potoskuev, S. E.
Title Intense electromagnetic radiation heating of electrons of a superconductor in the resistive state Type Journal Article
Year 1988 Publication Sov. J. Low Temp. Phys. Abbreviated Journal Sov. J. Low Temp. Phys.
Volume 14 Issue 7 Pages 414-420
Keywords HEB
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Duplicated as 1697 Approved no
Call Number Serial 236
Permanent link to this record
 

 
Author Гершензон, Е. М.; Гольцман, Г. Н.; Елантьев, А. И.; Карасик, Б. С.; Потоскуев, С. Э.
Title Разогрев электронов в резистивном состоянии сверхпроводника электромагнитным излучением значительной интенсивности Type Journal Article
Year 1988 Publication Физика низких температур Abbreviated Journal Физика низких температур
Volume 14 Issue 7 Pages 753-763
Keywords HEB
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Duplicated as 1697 Approved no
Call Number Serial 883
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol'tsman, G. N.; Elant'ev, A. I.; Karasik, B. S.; Potoskuev, S. E.
Title Intense electromagnetic radiation heating of superconductor electrons in resistive state Type Journal Article
Year 1988 Publication Fizika Nizkikh Temperatur Abbreviated Journal Fizika Nizkikh Temperatur
Volume 14 Issue 7 Pages 753-763
Keywords Nb HEB
Abstract An experimental study is made of the effect of intense radiation in the millimeter and submillimeter ranges on thin and narrow Nb films in the resistive state. It is found that the excess resistance resulting from radiation and the dependence of its relaxation time on radiation intensity and transport current can be explained in terms of the effect of electron heating. Quantitative agreement is obtained between the experimental data and a homogeneous electron heating model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1697
Permanent link to this record
 

 
Author Hübers, H.-W.; Semenov, A.; Richter, H.; Birk, M.; Krocka, M.; Mair, U.; Smirnov, K.; Gol’tsman, G.; Voronov, B.
Title Terahertz Heterodyn Receiver with a hot-electron bolometer mixer Type Conference Article
Year 2002 Publication Far-IR, Sub-mm & MM Detector Technology Workshop Abbreviated Journal Far-IR, Sub-mm & MM Detector Technology Workshop
Volume Issue Pages 3-24
Keywords NbN HEB mixers
Abstract During the past decade major advances have been made regarding low noise mixers for terahertz (THz) heterodyne receivers. State of the art hot-electron-bolometer (HEB) mixers have noise temperatures close to the quantum limit and require less than a µW power from the local oscillator (LO). The technology is now at a point where the performance of a practical receiver employing such mixer, rather than the figures of merit of the mixer itself, are of major concern. We have incorporated a phonon-cooled NbN HEB mixer in a 2.5 THz heterodyne receiver and investigated the performance of the receiver. This yields important information for the development of heterodyne receivers such as GREAT (German receiver for astronomy at THz frequencies aboard SOFIA) [1] and TELIS (Terahertz limb sounder), a balloon borne heterodyne receiver for atmospheric research [2]. Both are currently under development at DLR.
Address
Corporate Author Thesis
Publisher NASA Place of Publication Editor Wolf, U.; Farhoomand, J.; McCreight, C.R.
Language Summary Language Original Title
Series Editor Series Title NASA CP Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Volume: 211408 Approved no
Call Number Serial 1537
Permanent link to this record
 

 
Author Yagoubov, P.; Hübers, H.-W.; Gol’tsman, G.; Semenov, A.; Gao, J.; Hoogeveen, R.; de Graauw, T.; Birk, M.; Selig, A.; de Korte, P.
Title Hot-electron bolometer mixers – technology for far-infrared heterodyne instruments in future atmospheric chemistry missions Type Conference Article
Year 2001 Publication Proc. 3rd Int. Symp. Submillimeter Wave Earth Observation From Space Abbreviated Journal Proc. 3rd Int. Symp. Submillimeter Wave Earth Observation From Space
Volume Issue Pages 57-69
Keywords HEB mixers
Abstract
Address Delmenhorst
Corporate Author Thesis
Publisher Logos-Verlag Place of Publication Editor Buehler, S.; Berlin
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 3-89722-700-2 Medium
Area Expedition Conference International Symposium on Submillimeter Wave Earth Observation from Space, ISSMWEOS01
Notes Approved no
Call Number Serial 1549
Permanent link to this record
 

 
Author Schubert, J.; Semenov, A.; Hübers, H.-W.; Gol'tsman, G.; Schwaab, G.; Voronov, B.; Gershenzon, E.
Title Broad-band terahertz NbN hot-electron bolometric mixer Type Conference Article
Year 1999 Publication Inst. Phys. Conf. Abbreviated Journal Inst. Phys. Conf.
Volume 167 Issue Pages 663-666
Keywords NbN HEB mixers
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 4th Europ. Conf. on Appl. Superconductivity, Barcelona, Spain, 14-17 September 1999
Notes Approved no
Call Number Serial 1578
Permanent link to this record
 

 
Author Semenov, A.; Richter, H.; Hübers, H.-W.; Smirnov, K.; Voronov, B.; Gol'tsman, G.
Title Development of terahertz superconducting hot-electron bolometer mixers Type Conference Article
Year 2003 Publication Proc. 6th European Conf. Appl. Supercond. Abbreviated Journal Proc. 6th European Conf. Appl. Supercond.
Volume 181 Issue Pages 2960-2965
Keywords NbN HEB mixers
Abstract We present recent results of the development of phonon cooled hot-electron bolometric (HEB) mixers for airborne and balloon borne terahertz heterodyne receivers. Three iomportant issues have been addresses: the quality of NbN films the HEB mixers were made from, the spectral properties of the HEB mixers and the local oscillator power required for optical operation. Studies with an atomic force microscope indicate, that the performance of the HEB mixer might have been effected by the microstructure of the NbN film. Antenna gain and noise temperature were investigated at terahertz frequencies for a HEB embedded in either log-spiral or twin-slot feed antenna. Comparison suggests that at frequencies above 3 THz the spiral feed provides better overall performance. At 1.6 THz, a power of 2.5 µW was required from the local oscillator for optimal operation of the HEB mixer.
Address Sorrento, Italy
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 0750309814, 978-0750309813 Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1505
Permanent link to this record
 

 
Author Zhang, W.; Li, N.; Jiang, L.; Ren, Y.; Yao, Q.-J.; Lin, Z.-H.; Shi, S.-C.; Voronov, B. M.; Gol’tsman, G. N.
Title Dependence of noise temperature of quasi-optical superconducting hot-electron bolometer mixers on bath temperature and optical-axis displacement Type Conference Article
Year 2008 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 6840 Issue Pages 684007 (1 to 8)
Keywords NbN HEB mixers, noise temperature, LO power
Abstract It is known that the increase of bath temperature results in the decrease of critical current of superconducting hot-electron bolometer (HEB) mixers owing to the depression of superconductivity, thus leading to the degradation of the mixer’s sensitivity. Here we report our study on the effect of bath temperature on the heterodyne mixing performance of quasi-optical superconducting NbN HEB mixers incorporated with a two-arm log-spiral antenna. The correlation between the bath temperature, critical current, LO power requirement and noise temperature is investigated at 0.5 THz. Furthermore, the heterodyne mixing performance of quasi-optical superconducting NbN HEB mixers is examined while there is an optical-axis displacement between the center of the extended hemispherical silicon lens and the superconducting NbN HEB device, which is placed on the back of the lens. Detailed experimental results and analysis are presented.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor Zhang, C.; Zhang, X.-C.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Terahertz Photonics
Notes Approved no
Call Number Serial 1415
Permanent link to this record
 

 
Author Ryabchun, S.; Tong, C.-yu E.; Blundell, R.; Kimberk, R.; Gol’tsman, G.
Title Effect of microwave radiation on the stability of terahertz hot-electron bolometer mixers Type Conference Article
Year 2006 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 6373 Issue Pages 63730J (1 to 5)
Keywords NbN HEB mixers, hot-electron bolometer mixers, stability, Allan variance, LO power fluctuations
Abstract We report our studies of the effect of microwave radiation, with a frequency much lower than that corresponding to the energy gap of the superconductor, on the performance of the NbN hot-electron bolometer (HEB) mixer incorporated into a THz heterodyne receiver. It is shown that exposing the HEB mixer to microwave radiation does not result in a significant rise of the receiver noise temperature and degradation of the mixer conversion gain so long as the level of microwave power is small compared to the local oscillator drive. Hence the injection of a small, but controlled amount of microwave radiation enables active compensation of local oscillator power and coupling fluctuations which can significantly degrade the stability of HEB mixer receivers.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Anwar, M.; DeMaria, A.J.; Shur, M.S.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Terahertz Physics, Devices, and Systems
Notes Approved no
Call Number Serial 1441
Permanent link to this record
 

 
Author Hubers, H.-W.; Semenov, A.; Richter, H.; Schwarz, M.; Gunther, B.; Smirnov, K.; Gol’tsman, G.; Voronov, B.
Title Heterodyne receiver for 3-5 THz with hot-electron bolometer mixer Type Conference Article
Year 2004 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 5498 Issue Pages 579-586
Keywords NbN HEB mixers
Abstract Heterodyne receivers for applications in astronomy and planetary research need quantum limited sensitivity. In instruments which are currently build for SOFIA and Herschel superconducting hot electron bolometers (HEB) will be used to achieve this goal at frequencies above 1.4 THz. The local oscillator and the mixer are the most critical components for a heterodyne receiver operating at 3-5 THz. The design and performance of an optically pumped THz gas laser optimized for this frequency band will be presented. In order to optimize the performance for this frequency hot electron bolometer mixers with different in-plane dimensions and logarithmic-spiral feed antennas have been investigated. Their noise temperatures and beam patterns were measured. Above 3 THz the best performance was achieved with a superconducting bridge of 2.0 x 0.2 μm2 incorporated in a logarithmic spiral antenna. The DSB noise temperatures were 2700 K, 4700 K and 6400 K at 3.1 THz, 4.3 THz and 5.2 THz, respectively. The results demonstrate that the NbN HEB is very well suited as a mixer for THz heterodyne receivers up to at least 5 THz.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Zmuidzinas, J.; Holland, W.S.; Withington, S.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Millimeter and Submillimeter Detectors for Astronomy II
Notes Approved no
Call Number Serial 1483
Permanent link to this record
 

 
Author Baubert, J.; Salez, M.; Delorme, Y.; Pons, P.; Goltsman, G.; Merkel, H.; Leconte, B.
Title Membrane-based HEB mixer for THz applications Type Conference Article
Year 2003 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 5116 Issue Pages 551-562
Keywords membrane NbN HEB mixers, heterodyne receiver, stress-less membrane, coupling efficiency, submillimeter-waves frequency, low-cost space applications
Abstract We report in this paper a new concept for 2.7 THz superconducting Niobium nitride (NbN) Hot-Electron Bolometer mixer (HEB). The membrane process was developped for space telecommnunication applications a few years ago and the HEB mixer concept is now considered as the best choice for low-noise submillimeter-wave frequency heterodyne receivers. The idea is then to join these two technologies. The novel fabrication scheme is to fabricate a NbN HEB mixer on a 1 μm thick stress-less Si3N4/SiO2 membrane. This seems to present numerous improvements concerning : use at higher RF frequencies, power coupling efficiency, HEB mixer sensitivity, noise temperature, and space applications. This work is to be continued within the framework of an ESA TRP project, a 2.7 THz heterodyne camera with numerous applications including a SOFIA airborne receiver. This paper presents the whole fabrication process, the validation tests and preliminary results. Membrane-based HEB mixer theory is currently being investigated and further tests such as heterodyne and Fourier transform spectrometry measurement are planed shortly.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Chiao, J.-C.; Varadan, V.K.; Cané, C.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Smart Sensors, Actuators, and MEMS
Notes Approved no
Call Number Serial 1520
Permanent link to this record
 

 
Author Cherednichenko, S.; Khosropanah, P.; Adam, A.; Merkel, H. F.; Kollberg, E. L.; Loudkov, D.; Gol'tsman, G. N.; Voronov, B. M.; Richter, H.; Huebers, H.-W.
Title 1.4- to 1.7-THz NbN hot-electron bolometer mixer for the Herschel space observatory Type Conference Article
Year 2003 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 4855 Issue Pages 361-370
Keywords NbN HEB mixers
Abstract NbN hot- electron bolometer mixers have reached the level of 10hv/k in terms of the input noise temperature with the noise bandwidth of 4-6 GHz from subMM band up to 2.5 THz. In this paper we discuss the major characteristics of this kind of receiver, i.e. the gain and the noise bandwidth, the noise temperature in a wide RF band, bias regimes and optimisation of RF coupling to the quasioptical mixer. We present the status of the development of the mixer for Band 6 Low for Herschel Telescope.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Phillips, T.G.; Zmuidzinas, J.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Millimeter and Submillimeter Detectors for Astronomy
Notes Approved no
Call Number Serial 1521
Permanent link to this record
 

 
Author Huebers, H.-W.; Semenov, A.; Richter, H.; Birk, M.; Krocka, M.; Mair, U.; Smirnov, K.; Gol’tsman, G. N.; Voronov, B. M.
Title Superconducting hot electron bolometer as mixer for far-infrared heterodyne receivers Type Conference Article
Year 2003 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 4855 Issue Pages 395-401
Keywords NbN HEB mixers
Abstract Heterodyne receivers for applications in astronomy need quantum limited sensitivity. In instruments which are currently under development for SOFIA or Herschel superconducting hot electron bolometers (HEB) will be used to achieve this goal at frequencies above 1.4 THz. We present results of the development of a phonon-cooled NbN HEB mixer for GREAT, the German Receiver for Astronomy at Terahertz Frequencies, which will be flown aboard SOFIA. The mixer is a small superconducting bridge incorporated in a planar feed antenna and a hyperhemispherical lens. Mixers with logarithmic-spiral and double-slot feed antennas have been investigated with respect to their noise temperature, conversion loss, linearity and beam pattern. At 2.5 THz a double sideband noise temperature of 2200 K was achieved. The conversion loss was 17 dB. The response of the mixer was linear up to 400 K load temperature. The performance was verified by measuring an emission line of methanol at 2.5 THz. The measured linewidth is in good agreement with the linewidth deduced from pressure broadening measurements at millimeter wavelength. The results demonstrate that the NbN HEB is very well suited as a mixer for far-infrared heterodyne receivers.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Tucson, USA Editor Phillips, T. G.; Zmuidzinas, J.
Language Summary Language Original Title
Series Editor Series Title Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Abbreviated Series Title
Series Volume 4855 Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Millimeter and Submillimeter Detectors for Astronomy
Notes Approved no
Call Number Serial 335
Permanent link to this record
 

 
Author Huebers, H.-W.; Semenov, A.; Schubert, J.; Gol’tsman, G. N.; Voronov, B. M.; Gershenzon, E. M.; Krabbe, A.; Roeser, H.-P.
Title NbN hot-electron bolometer as THz mixer for SOFIA Type Conference Article
Year 2000 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 4014 Issue Pages 195-202
Keywords NbN HEB mixers, airborne, stratospheric observatory, SOFIA
Abstract Heterodyne receivers for applications in astronomy need quantum limited sensitivity. We have investigated phonon- cooled NbN hot electron bolometric mixers in the frequency range from 0.7 THz to 5.2 THz. The devices were 3.5 nm thin films with an in-plane dimension of 1.7 X 0.2 micrometers 2 integrated in a complementary logarithmic spiral antenna. The best measured DSB receiver noise temperatures are 1300 K (0.7 THz), 2000 K (1.4 THz), 2100 K (1.6 THz), 2600 K (2.5 THz), 4000 K (3.1 THz), 5600 K (4.3 THz), and 8800 K (5.2 THz). The sensitivity fluctuation, the long term stability, and the antenna pattern were measured. The results demonstrate that this mixer is very well suited for GREAT, the German heterodyne receiver for SOFIA.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Melugin, R.K.; Roeser, H.-P.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Airborne Telescope Systems
Notes Approved no
Call Number Serial 1554
Permanent link to this record
 

 
Author Yngvesson, K. S.; Gerecht, E.; Musante, C. F.; Zhuang, Y.; Ji, M.; Goyette, T. M.; Dickinson, J. C.; Waldman, J.; Yagoubov, P. A.; Gol’tsman, G. N.; Voronov, B. M.; Gershenzon, E. M.
Title Low-noise HEB heterodyne receivers and focal plane arrays for the THz regime using NbN Type Conference Article
Year 1999 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 3795 Issue Pages 357-368
Keywords NbN HEB mixers
Abstract We have developed prototype HEB receivers using thin film superconducting NbN devices deposited on silicon substrates. The devices are quasi-optically coupled through a silicon lens and a self-complementary log-specific toothed antenna. We measured DSB receiver noise temperatures of 500 K (13 X hf/2k) at 1.56 THz and 1,100 K (20 X hf/2k) at 2.24 THz. Noise temperatures are expected to fall further as devices and quasi-optical coupling methods are being optimized. The measured 3 dB IF conversion gain bandwidth for one device was 3 GHz, and it is estimated that the bandwidth over which the receiver noise temperature is within 3 dB of its minimum value is 6.5 GHz which is sufficient for a number of practical applications. We will discuss our latest results and give a detailed description of our prototype setup and experiments. We will also discuss our plans for developing focal plane arrays with tens of Hot Electron Bolometric mixer elements on a single silicon substrate which will make real time imaging systems in the THz region feasible.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Hwu, R.J.; Wu, K.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Terahertz and Gigahertz Photonics
Notes Approved no
Call Number Serial 1561
Permanent link to this record
 

 
Author Huebers, H.-W.; Schubert, J.; Semenov, A.; Gol’tsman, G. N.; Voronov, B. M.; Gershenzon, E. M.; Schwaab, G. W.
Title NbN phonon-cooled hot-electron bolometer as a mixer for THz heterodyne receivers Type Conference Article
Year 1999 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 3828 Issue Pages 410-416
Keywords NbN HEB mixers
Abstract We have investigated a phonon-cooled NbN hot electron bolometric (HEB) mixer in the frequency range from 0.7 THz to 5.2 THz. The device was a 3.5 nm thin film with an in- plane dimension of 1.7 X 0.2 micrometers 2 integrated in a complementary logarithmic spiral antenna. The measured DSB receiver noise temperatures are 1500 K, 2200 K, 2600 K, 2900 K, 4000 K, 5600 K and 8800 K. The sensitivity fluctuation, the long term stability, and the antenna pattern were measured and the suitability of the mixer for a practical heterodyne receiver is discussed.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor Chamberlain, J.M.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Terahertz Spectroscopy and Applications II
Notes Approved no
Call Number Serial 1477
Permanent link to this record
 

 
Author Schwaab, G.W.; Auen, K.; Bruendermann, E.; Feinaeugle, R.; Gol’tsman, G.N.; Huebers, H.-W.; Krabbe, A.; Roeser, H.-P.; Sirmain, G.
Title 2- to 6-THz heterodyne receiver array for the Stratospheric Observatory for Infrared Astronomy (SOFIA) Type Conference Article
Year 1998 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 3357 Issue Pages 85-96
Keywords NbN HEB mixers, applications, stratospheric observatory, airborne
Abstract The Institute of Space Sensor Technology of the German Aerospace Center (DLR) is developing a heterodyne array receiver for the frequency range 2 to 6 THz for the Stratospheric Observatory for Infrared Astronomy (SOFIA). Key science issues in that frequency range are the observation of lines of atoms [e.g. (OI)], ions [e.g. (CII), (NII)], and molecules (e.g. OH, HD, CO) with high spectral resolution to study the dynamics and evolution of galactic and extragalactic objects. Long term goal is the development of an integrated array heterodyne receiver with superconducting hot electron bolometric (HEB) mixers and p-type Ge or Si lasers as local oscillators. The first generation receiver will be composed of HEB mixers in a 2 pixel 2 polarization array which will be pumped by a gas laser local oscillator. Improved Schottky diode mixers are the backup solution for the HEBs. The state of the art of HEB mixer and p-type Ge laser technology are described as well as possible improvements in the ’conventional’ optically pumped far-infrared laser and Schottky diode mixer technology. Finally, the frequency coverage of the first generation heterodyne receiver for some important astronomical transitions is discussed. The expected sensitivity is compared to line fluxes measured by the ISO satellite.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Phillips, T.G.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Advanced Technology MMW, Radio, and Terahertz Telescopes
Notes Approved no
Call Number Serial 1583
Permanent link to this record
 

 
Author Danerud, M.; Winkler, D.; Zorin, M.; Trifonov, V.; Karasik, B.; Gershenzon, E. M.; Gol'tsman, G. N.; Lindgren, M.
Title Picosecond detection of infrared radiation with YBa2Cu3O7-δ thin films Type Conference Article
Year 1993 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 2104 Issue Pages 183-184
Keywords YBCO HTS HEB detectors
Abstract Picosecond nonequilibrium and slow bolometric responses from a patterned high-Tc superconducting (HTS) film due toinfrared radiation were investigated using both modulation and pulse techniques. Measurements at A, = 0.85 [tm andA, = 10.6 lim have shown a similar behaviour of the response vs modulation frequency f. The responsivity of the HTS filmbased detector at f ..- 0.6-1 GHz is estimated to be 10-2 – 10-1 V/W.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor Birch, J.R.; Parker, T.J.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 18th International Conference on Infrared and Millimeter Waves
Notes https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=25034664 Approved no
Call Number 10.1117/12.2298489 Serial 1653
Permanent link to this record
 

 
Author Gol’tsman, G. N.; Gershenzon, E. M.
Title High speed hot-electron superconducting bolometer Type Conference Article
Year 1993 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 2104 Issue Pages 181-182
Keywords NbN HEb, Nb, Al
Abstract Physical limitation of response time of a superconducting bolometer as well as the nature of non-equilibrium detection of radiation have been investigated for Al, Nb and NbN thin films in spectral range from submillimeter to near-infraredwavelengths [1,2]. In the case of ideal heat removal from the film with the f_‘. 100A thickness the detection mechanism is an electron heating effect that is not selective to radiation wavelength in a very broad range. The response time ofan electron heating bolometer is determined by an electron-phonon interaction time. This time is of about 10 ns, 0.5 ns and 20 ps for Al, Nb, and NbN correspondingly near the critical temperature of the superconducting film. Thesensitive area of the bolometer consists of a number of narrow strips (with awidth of 1µm) connected in parallel to contact pads; these pads together witha sapphire substrate and a ground plate represent the microstrip transmissionline with an impedance of 50 Q.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Birch, J.R.; Parker, T.J.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 18th International Conference on Infrared and Millimeter Waves
Notes Approved no
Call Number Serial 1652
Permanent link to this record
 

 
Author Gol’tsman, G. N.; Kouminov, P. B.; Goghidze, I. G.; Karasik, B. S.; Gershenzon, E. M.
Title Nonbolometric and fast bolometric responses of YBaCuO thin films in superconducting, resistive, and normal states Type Conference Article
Year 1994 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 2159 Issue Pages 81-86
Keywords YBCO HTS HEB, nonbolornetric
Abstract The transient voltage response in both epitaxial and granular YBaCuO thin films to 20 ps pulses of YAG:Nd laser radiation with 0.63 micrometers and 1.54 micrometers was studied. In normal and resistive states both types of films demonstrate two components: nonequilibrium picosecond component and following bolometric nanosecond. The normalized amplitudes are almost the same for all films. In superconducting state we observed a kinetic inductive response and two-component shape after integration. The normalized amplitude of the response in granular films is up to several orders of magnitude larger than in epitaxial films. We interpret the nonequilibrium response in terms of a suppression of order parameter by the excess of quasiparticles followed by the change of resistance in normal and resistive states or kinetic inductance in superconducting state. The sharp rise of inductive response in granular films is explained both by a diminishing of the crossection for current percolation through the disordered network os Josephson weak links and by a decrease of condensate density in neighboring regions.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Nahum, M.; Villegier, J.-C.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference High-Temperature Superconducting Detectors: Bolometric and Nonbolometric
Notes Approved no
Call Number Serial 1641
Permanent link to this record
 

 
Author Karasik, B.S.; Lindgren, M.; Zorin, M.A.; Danerud, M.; Winkler, D.; Trifonov, V.V.; Gol’tsman, G.N.; Gershenzon, E.M.
Title Picosecond detection and broadband mixing of near-infrared radiation by YBaCuO films Type Conference Article
Year 1994 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 2159 Issue Pages 68-76
Keywords YBCO HTS HEB mixer
Abstract Nonequilibrium picosecond and bolometric responses of YBCO films 500 angstroms thick patterned into 20 X 20 micrometers 2 size structure to 17 ps laser pulses and modulated radiation of GaAs and CO2 lasers have been studied. The modulation frequencies up to 10 GHz for GaAs laser and up to 1 GHz for CO2 were attained. The use of small radiation power (1 – 10 mW/cm2 for cw radiation and 10 – 100 nJ/cm2 for pulse radiation) in combination with high sensitive read-out system made possible to avoid any non-linear transient processes caused by an overheating of sample above a critical temperature or S-N switching enhanced by an intense radiation. Responses due to the change of kinetic inductance were believed to be negligible. The only signals observed were caused by a small change of the film resistance either in the resistive state created by a bias current or in the normal state. The data obtained by means of pulse and modulation techniques are in agreement. The responsivity about 1 V/W was measured at 1 GHz modulation frequency both for 0.85 micrometers and 10.6 micrometers wavelengths. The sensitivity of high-Tc fast wideband infrared detector is discussed.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor Nahum, M.; Villegier, J.-C.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference High-Temperature Superconducting Detectors: Bolometric and Nonbolometric
Notes Approved no
Call Number Serial 1640
Permanent link to this record
 

 
Author Lobanov, Y. V.; Vakhtomin, Y. B.; Pentin, I. V.; Rosental, V. A.; Smirnov, K. V.; Goltsman, G. N.; Volkov, O. Y.; Dyuzhikov, I. N.; Galiev, R. R.; Ponomarev, D. S.; Khabibullin, R. A.
Title Time-resolved measurements of light–current characteristic and mode competition in pulsed THz quantum cascade laser Type Journal Article
Year 2021 Publication Optical Engineering Abbreviated Journal Optical Engineering
Volume 60 Issue 8 Pages 1-8
Keywords HEB, terahertz pulse generation, terahertz pulse detection, QCL, quantum cascade laser, superconducting hot electron bolometer
Abstract Quantum cascade lasers (QCL) are widely adopted as prominent and easy-to-use solid-state sources of terahertz radiation. Yet some applications require generation and detection of very sharp and narrow terahertz-range pulses with a specific spectral composition. We have studied time-resolved light-current (L–I) characteristics of multimode THz QCL operated with a fast ramp of the injection current. Detection of THz pulses was carried out using an NbN superconducting hot-electron bolometer with the time constant of the order of 1 ns while the laser bias current was swept during a single driving pulse. A nonmonotonic behavior of the L–I characteristic with several visually separated subpeaks was found. This behavior is associated with the mode competition in THz QCL cavity, which we confirm by L–I measurements with use of an external Fabry–Perot interferometer for a discrete mode selection. We also have demonstrated the possibility to control the L–I shape with suppression of one of the subpeaks by simply adjusting the off-axis parabolic mirror for optimal optical alignment for one of the laser modes. The developed technique paves the way for rapid characterization of pulsed THz QCLs for further studies of the possibilities of using this approach in remote sensing.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number 10.1117/1.Oe.60.8.082019 Serial 1260
Permanent link to this record
 

 
Author Krause, S.; Mityashkin, V.; Antipov, S.; Gol’tsman, G.; Meledin, D.; Desmaris, V.; Belitsky, V.; Rudziński, M.
Title Reduction of phonon escape time for nbn hot electron bolometers by using gan buffer layers Type Journal Article
Year 2017 Publication IEEE Trans. Terahertz Sci. Technol. Abbreviated Journal IEEE Trans. Terahertz Sci. Technol.
Volume 7 Issue 1 Pages 53-59
Keywords NbN HEB mixer
Abstract In this paper, we investigated the influence of the GaN buffer layer on the phonon escape time of phonon-cooled hot electron bolometers (HEBs) based on NbN material and compared our findings to conventionally employed Si substrate. The presented experimental setup and operation of the HEB close to the critical temperature of the NbN film allowed for the extraction of phonon escape time in a simplified manner. Two independent experiments were performed at GARD/Chalmers and MSPU on a similar experimental setup at frequencies of approximately 180 and 140 GHz, respectively, and have shown reproducible and consistent results. By fitting the normalized IF measurement data to the heat balance equations, the escape time as a fitting parameter has been deduced and amounts to 45 ps for the HEB based on Si substrate as in contrast to a significantly reduced escape time of 18 ps for the HEB utilizing the GaN buffer layer under the assumption that no additional electron diffusion has taken place. This study indicates a high phonon transmissivity of the NbN-to-GaN interface and a prospective increase of IF bandwidth for HEB made of NbN on GaN buffer layers, which is desirable for future THz HEB heterodyne receivers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2156-3446 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1330
Permanent link to this record
 

 
Author Yagoubov, P.; Kroug, M.; Merkel, H.; Kollberg, E.; Schubert, J.; Hubers, H.-W.; Schwaab, G.; Gol’tsman, G.; Gershenzon, E.
Title Performance of NbN phonon-cooled hot-electron bolometric mixer at Terahertz frequencies Type Conference Article
Year 1998 Publication Proc. 6-th Int. Conf. Terahertz Electron. Abbreviated Journal Proc. 6-th Int. Conf. Terahertz Electron.
Volume Issue Pages 149-152
Keywords NbN HEB mixers
Abstract The performance of a NbN based phonon-cooled Hot Electron Bolometric (HEB) quasioptical mixer is investigated in the 0.65-3.12 THz frequency range. The device is made from a 3 nm thick NbN film on high resistivity Si and integrated with a planar spiral antenna on the same substrate. The in-plane dimensions of the bolometer strip are 0.2/spl times/2 /spl mu/m. The results of the DSB noire temperature are: 1300 K at 650 GHz, 4700 K at 2.5 TBz and 10000 K at 3.12 THz. The RF bandwidth of the receiver is at least 2.5 THz. The amount of LO power absorbed in the bolometer is about 100 nW. The mixer is linear to within 1 dB compression up to the signal level 10 dB below that of the LO. The intrinsic single sideband conversion gain is measured to be -9 dB, the total conversion gain -14 dB.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference IEEE Sixth International Conference on Terahertz Electronics Proceedings. THZ 98. (Cat. No.98EX171)
Notes Approved no
Call Number Serial 1582
Permanent link to this record
 

 
Author Blundell, R.; Kawamura, J. H.; Tong, C. E.; Papa, D. C.; Hunter, T. R.; Gol’tsman, G. N.; Cherednichenko, S. I.; Voronov, B. M.; Gershenzon, E. M.
Title A hot-electron bolometer mixer receiver for the 680-830 GHz frequency range Type Conference Article
Year 1998 Publication Proc. 6-th Int. Conf. Terahertz Electron. Abbreviated Journal Proc. 6-th Int. Conf. Terahertz Electron.
Volume Issue Pages 18-20
Keywords NbN HEB mixers
Abstract We describe a heterodyne receiver designed to operate in the partially transparent atmospheric windows centered on 680 and 830 GHz. The receiver incorporates a niobium nitride thin film, cooled to 4.2 K, as the phonon-cooled hot-electron mixer element. The double sideband receiver noise, measured over the frequency range 680-830 GHz, is typically 700-1300 K. The instantaneous output bandwidth of the receiver is 600 MHz. This receiver has recently been used at the SubMillimeter Telescope, jointly operated by the Steward Observatory and the Max Planck Institute for Radioastronomy, for observations of the neutral carbon and CO spectral lines at 810 GHz and at 806 and 691 GHz respectively. Laboratory measurements on a second mixer in the same test receiver have yielded extended high frequency performance to 1 THz.
Address Leeds, UK
Corporate Author Thesis
Publisher IEEE Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 0-7803-4903-2 Medium
Area Expedition Conference IEEE Sixth International Conference on Terahertz Electronics Proceedings. THZ 98. (Cat. No.98EX171)
Notes Approved no
Call Number Serial 1581
Permanent link to this record
 

 
Author Trifonov, A.; Tong, C.-Y. E.; Lobanov, Y.; Kaurova, N.; Blundell, R.; Goltsman, G.
Title Photon absorption near the gap frequency in a hot electron bolometer Type Journal Article
Year 2017 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 27 Issue 4 Pages 1-4
Keywords NBN HEB mixer
Abstract The superconducting energy gap is a fundamental characteristic of a superconducting film, which, together with the applied pump power and the biasing setup, defines the instantaneous resistive state of the Hot Electron Bolometer (HEB) mixer at any given bias point on the I-V curve. In this paper we report on a series of experiments, in which we subjected the HEB to radiation over a wide frequency range along with parallel microwave injection. We have observed three distinct regimes of operation of the HEB, depending on whether the radiation is above the gap frequency, far below it or close to it. These regimes are driven by the different patterns of photon absorption. The experiments have allowed us to derive the approximate gap frequency of the device under test as about 585 GHz. Microwave injection was used to probe the HEB impedance. Spontaneous switching between the superconducting (low resistive) state and a quasi-normal (high resistive) state was observed. The switching pattern depends on the particular regime of HEB operation and can assume a random pattern at pump frequencies below the gap to a regular relaxation oscillation running at a few MHz when pumped above the gap.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1558-2515 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1331
Permanent link to this record
 

 
Author Tong, C.-Y. E.; Trifonov, A.; Shurakov, A.; Blundell, R.; Gol’tsman, G.
Title A microwave-operated hot-electron-bolometric power detector for terahertz radiation Type Journal Article
Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 25 Issue 3 Pages 2300604 (1 to 4)
Keywords NbN HEB mixer
Abstract A new class of microwave-operated THz power detectors based on the NbN hot-electron-bolometer (HEB) mixer is proposed. The injected microwave signal ( 1 GHz) serves the dual purpose of pumping the HEB element and enabling the read-out of the internal state of the device. A cryogenic amplifier amplifies the reflected microwave signal from the device and a homodyne scheme recovers the effects of the incident THz radiation. Two modes of operation have been identified, depending on the level of incident radiation. For weak signals, we use a chopper to chop the incident radiation against a black body reference and a lock-in amplifier to perform synchronous detection of the homodyne readout. The voltage measured is proportional to the incident power, and we estimate an optical noise equivalent power of  5pW/ √Hz at 0.83 THz. At higher signal levels, the homodyne circuit recovers the stream of steady relaxation oscillation pulses from the HEB device. The frequency of these pulses is in the MHz frequency range and bears a linear relationship with the incident THz radiation over an input power range of  15 dB. A digital frequency counter is used to measure THz power. The applicable power range is between 1 nW and 1 μW.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1558-2515 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1354
Permanent link to this record
 

 
Author Jiang, L.; Li, J.; Zhang, W.; Yao, Q. J.; Lin, Z. L.; Shi, S. C.; Vachtomin, Y. B.; Antipov, S. V.; Svechnikov, S. I.; Voronov, B. M.; Goltsman, G. N.
Title Characterization of NbN HEB mixers cooled by a close-cycled 4 Kelvin refrigerator Type Journal Article
Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 15 Issue 2 Pages 511-513
Keywords NbN HEB mixers
Abstract It is quite beneficial to operate superconducting hot-electron-bolometer (HEB) mixers with a close-cycled 4 Kelvin refrigerator for real applications such as astronomy and atmospheric research. In this paper, a phononcooled NbN HEB mixer (quasioptical type) is thoroughly characterized under such a cooling circumstance. The effects of mechanical vibration, electrical interference, and temperature fluctuation of a two-stage Gifford-McMahon 4 Kelvin refrigerator upon the characteristics of the phononcooled NbN HEB mixer are investigated in particular. Detailed measurement results are presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1558-2515 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1469
Permanent link to this record
 

 
Author Baubert, J.; Salez, M.; Merkel, H.; Pons, P.; Cherednichenko, S.; Lecomte, B.; Drakinsky, V.; Goltsman, G.; Leone, B.
Title IF gain bandwidth of membrane-based NbN hot electron bolometers for SHAHIRA Type Journal Article
Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 15 Issue 2 Pages 507-510
Keywords NbN HEB mixers, applications
Abstract SHAHIRA (Submm Heterodyne Array for HIgh-speed Radio Astronomy) is a project supported by the European Space Agency (ESA) and is designed to fly on the SOFIA observatory. A quasi-optic design has been chosen for 2.5/2.7 THz and 4.7 THz, for hydroxyde radical OH, deuterated hydrogen HD and neutral atomic oxygen OI lines observations. Hot electron bolometers (HEBs) have been processed on 1 /spl mu/m thick SiO/sub 2//Si/sub 3/N/sub 4/ stress-less membranes. In this paper we analyse the intermediate frequency (IF) gain bandwidth from the theoretical point of view, and compare it to measurements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1558-2515 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1468
Permanent link to this record
 

 
Author Loudkov, D.; Tong, C.-Y. E.; Blundell, R.; Kaurova, N.; Grishina, E.; Voronov, B.; Gol’tsman, G.
Title An investigation of the performance of the superconducting HEB mixer as a function of its RF embedding impedance Type Journal Article
Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 15 Issue 2 Pages 472-475
Keywords waveguide NbN HEB mixers
Abstract We have conducted an investigation of the optimal embedding impedance for a waveguide superconducting hot-electron bolometric (HEB) mixer. Three mixer chip designs for 800 GHz, offering nominal embedding resistances of 70 /spl Omega/, 35 /spl Omega/, and 15 /spl Omega/, have been developed. We used both High Frequency Structure Simulator (HFSS) software and scale model impedance measurements in the design process. We subsequently fabricated HEB mixers to these designs using 3-4 nm thick NbN thin film. Receiver noise temperature measurements and Fourier Transform Spectrometer (FTS) scans were performed to determine the optimal combination of embedding impedance and normal-state resistance for a 50 Ohm IF load impedance. A receiver noise temperature of 440 K was measured at a local oscillator frequency 850 GHz for a mixer with normal state resistance of 62 /spl Omega/ incorporated into a circuit offering a nominal embedding impedance of 70 /spl Omega/. We conclude from our data that, for low noise operation, the normal state resistance of the HEB mixer element should be close to the embedding impedance of the mixer mount.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number 1439677 Serial 1464
Permanent link to this record
 

 
Author Tong, C.-Y. E.; Meledin, D.; Loudkov, D.; Blundell, R.; Erickson, N.; Kawamura, J.; Mehdi, I.; Gol’tsman, G.
Title A 1.5 THz Hot-Electron Bolometer mixer operated by a planar diode based local oscillator Type Conference Article
Year 2003 Publication IEEE MTT-S Int. Microwave Symp. Digest Abbreviated Journal IEEE MTT-S Int. Microwave Symp. Digest
Volume 2 Issue Pages 751-754
Keywords waveguide NbN HEB mixers
Abstract We have developed a 1.5 THz superconducting NbN Hot-Electron Bolometer mixer. It is operated by an all-solid-state Local Oscillator comprising of a cascade of 4 planar doublers following an MMIC based W-band power amplifier. The threshold available pump power is estimated to be 1 /spl mu/W.
Address Philadelphia, PA, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1516
Permanent link to this record
 

 
Author Antipov, S. V.; Vachtomin, Yu. B.; Maslennikov, S. N.; Smirnov, K. V.; Kaurova, N. S.; Grishina, E. V.; Voronov, B. M.; Goltsman, G. N.
Title Noise performance of quasioptical ultrathin NbN hot electron bolometer mixer at 2.5 and 3.8 THz Type Conference Article
Year 2004 Publication Proc. 5-th MSMW Abbreviated Journal Proc. 5-th MSMW
Volume 2 Issue Pages 592-594
Keywords NbN HEB mixers
Abstract To put space-based and airborne heterodyne instruments into operation at frequencies above 1 THz the superconducting NbN hot-electron bolometer (HEB) will be incorporated into heterodyne receiver as a mixer. At frequencies above 1.3 THz the sensitivity of the NbN HEB mixers outperform the one of the Schottky diodes and SIS-mixers, and the receiver noise temperature of the NbN HEB mixers increase with frequency. In this paper we present the results of the noise temperature measurements within one batch of NbN HEB mixers based on 3.5 mn thick superconducting NbN film grown on Si substrate with MgO buffer layer at the LO frequencies 2.5 THz and 3.8 THz.
Address Kharkov, Ukraine
Corporate Author Thesis
Publisher Place of Publication Kharkov, Ukraine Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference The Fifth International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter, and Submillimeter Waves (IEEE Cat. No.04EX828)
Notes Approved no
Call Number Serial 351
Permanent link to this record
 

 
Author Maslennikov, S. N.; Morozov, D. V.; Ozhegov, R. V.; Smirnov, K. V.; Okunev, O. V.; Gol’tsman, G. N.
Title Imaging system for submillimeter wave range based on AlGaAs/GaAs hot electron bolometer mixers Type Conference Article
Year 2004 Publication Proc. 5-th MSMW Abbreviated Journal Proc. 5-th MSMW
Volume 2 Issue Pages 558-560
Keywords AlGaAs/GaAs HEB mixers
Abstract Electromagnetic radiation of the submillimeter (SMM) range is dispersed and absorbed significantly less than infrared (IR) radiation when passing through different objects. That is the reason for the development of an SMM imaging system. In this paper, we discuss the design of an SMM heterodyne imager, based on a matrix of AlGaAs/GaAs heterostructure hot electron bolometer mixers (HEB) with relatively high (about 77 K) operating temperature. The predicted double side band (DSB) noise temperature is about 1000 K and optimal local oscillator (LO) power is about 1 /spl mu/W for such mixers, which seems to be quite prospective for an SMM heterodyne imager.
Address Kharkov, Ukraine
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference The Fifth International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter, and Submillimeter Waves (IEEE Cat. No.04EX828)
Notes Approved no
Call Number Serial 1487
Permanent link to this record
 

 
Author Kuznetsov, K. A.; Kornienko, V. V.; Vakhtomin, Y. B.; Pentin, I. V.; Smirnov, K. V.; Kitaeva, G. K.
Title Generation and detection of optical-terahertz biphotons via spontaneous parametric downconversion Type Conference Article
Year 2018 Publication Proc. ICLO Abbreviated Journal Proc. ICLO
Volume Issue Pages 303
Keywords NbN HEB applications
Abstract We study spontaneous parametric downconversion (SPDC) in the strongly non-degenerate regime when the idler wave hits the terahertz range. By using the hot-electron bolometer, for the first time the SPDC-generated idler-wave photons were directly detected in the terahertz frequency range. Spectrum of corresponding signal photons was measured using standard technique by the CCD camera. Possible applications of correlated optical-terahertz biphotons are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference International Conference Laser Optics
Notes Approved no
Call Number Serial 1806
Permanent link to this record
 

 
Author Pentin, I. V.; Smirnov, A. V.; Ryabchun, S. A.; Gol’tsman, G. N.; Vaks, V. L.; Pripolzin, S. I.; Paveliev, D. G.
Title Heterodyne source of THz range based on semiconductor superlattice multiplier Type Conference Article
Year 2011 Publication IRMMW-THz Abbreviated Journal IRMMW-THz
Volume Issue Pages 1-2
Keywords NbN HEB mixer, superlattice
Abstract We present the results of our studies of the possibility of developing a heterodyne receiver incorporating a hot-electron bolometer mixer as the detector and a semiconductor superlattice multiplier driven by a reference synthesizer as the local oscillator. We observe that such a local oscillator offers enough power in the terahertz range to pump the HEB into the operating state.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number 6105209 Serial 1384
Permanent link to this record
 

 
Author Palma, F.; Teppe, F.; Fatimy, A. E.; Green, R.; Xu, J.; Vachontin, Y.; Tredicucci, A.; Goltsman, G.; Knap, W.
Title THz communication system based on a THz quantum cascade laser and a hot electron bolometer Type Conference Article
Year 2010 Publication 35th Int. Conf. Infrared, Millimeter, and Terahertz Waves Abbreviated Journal 35th Int. Conf. Infrared, Millimeter, and Terahertz Waves
Volume Issue Pages 11623798 (1 to 2)
Keywords QCL, HEB detector
Abstract We present the experimental study of the direct emission – detection system based on the THz Quantum Cascade Laser as a source and Hot Electron Bolometer (HEB) detector – in view of its application as an optical communication system. We show that the system can efficiently transmit the QCL Terahertz pulses. We estimate the maximal modulation speed of the system to be about several GHz and show that it is limited only by the QCL pulse power supply, detector amplifier and connection line/wires parameters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1391
Permanent link to this record
 

 
Author Goltsman, G. N.; Korneev, A. A.; Finkel, M. I.; Divochiy, A. V.; Florya, I. N.; Korneeva, Y. P.; Tarkhov, M. A.; Ryabchun, S. A.; Tretyakov, I. V.; Maslennikov, S. N.; Kaurova, N. S.; Chulkova, G. M.; Voronov, B. M.
Title Superconducting hot-electron bolometer as THz mixer, direct detector and IR single-photon counter Type Abstract
Year 2010 Publication 35th Int. Conf. Infrared, Millimeter, and Terahertz Waves Abbreviated Journal
Volume Issue Pages 1-1
Keywords SSPD, SNSPD, HEB
Abstract We present a new generation of superconducting single-photon detectors (SSPDs) and hot-electron superconducting sensors with record characteristic for many terahertz and optical applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2162-2027 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ sasha @ goltsman2010superconducting Serial 1028
Permanent link to this record
 

 
Author Richter, H.; Semenov, A.; Hubers, H.-W.; Smirnov, K.; Gol’tsman, G.; Voronov, B.
Title Phonon cooled hot-electron bolometric mixer for 1-5 THz Type Conference Article
Year 2004 Publication Proc. 29th IRMMW / 12th THz Abbreviated Journal Proc. 29th IRMMW / 12th THz
Volume Issue Pages 241-242
Keywords NbN HEB mixers
Abstract Heterodyne receivers for applications in astronomy and planetary research need quantum limited sensitivity. In instruments which are currently built for SOFIA and Herschel, superconducting hot electron bolometers (HEB) are used to achieve this goal at frequencies above 1.4 THz. In order to optimize the performance for this frequency of hot electron bolometer mixers with different in-plane dimensions and logarithmic-spiral feed antennas have been investigated. Their noise temperatures and beam patterns were measured. Above 3 THz the best performance was achieved with a superconducting bridge of 2.0/spl times/0.2 /spl mu/m/sup 2/ incorporated in a logarithmic spiral antenna. The DSB noise temperatures were 2700 K, 4700 and 6400 K at 3.1 THz, 4.3 THz and 5.2 THz, respectively. The results demonstrate that the NbN HEB is very well suited as a mixer for THz heterodyne receivers up to at least 5 THz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1506
Permanent link to this record
 

 
Author Merkel, H. F.; Yagoubov, P. A.; Kroug, M.; Khosropanah, P.; Kollberg, E. L.; Gol’tsman, G. N.; Gershenzon, E. M.
Title Noise temperature and absorbed LO power measurement methods for NbN phonon-cooled hot electron bolometric mixers at terahertz frequencies Type Conference Article
Year 1998 Publication Proc. 28th European Microwave Conf. Abbreviated Journal Proc. 28th European Microwave Conf.
Volume 1 Issue Pages 294-299
Keywords NbN HEB mixers
Abstract In this paper the absorbed LO power requirements and the noise performance of NbN based phonon-cooled hot electron bolometric (HEB) quasioptical mixers are investigated for RF frequencies in the 0.55-1.1 range The minimal measured DSB noise temperatures are about 500 K at 640 GHz, 600 K at 750 GHz, 850 K at 910 GHz and 1250 K at 1.1 THz. The increase in noise temperature at 1.1THz is attributed to water absorption. The absorbed LO power is measured using a calorimetric approach. The results are subsequently corrected for lattice heating. These values are compared to results of a novel one dimensional hot spot mixer models and to a more traditional isotherm method which tends to underestimate the absorbed LO power for small bias powers. Typically a LO power between 50nW and 100nW is needed to pump the device to the optimal operating point.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 28th European Microwave Conference
Notes Approved no
Call Number Serial 1580
Permanent link to this record
 

 
Author Gol’tsman, G. N.
Title Terahertz technology in Russia Type Conference Article
Year 1994 Publication 24th European Microwave Conf. Abbreviated Journal 24th European Microwave Conf.
Volume 1 Issue Pages 113-121
Keywords BWO, HEB mixers
Abstract The presentation consider the parameters and operating peculiarities of unique microwave generators of the terahertz range which have been created in Russia – the backward wave oscillators – as well as certain devices based on these generators, such as high resolution. spectrometers and time-resolving spectrometers with picosecond temporal resolution. Most resent BWO-based studies are illustrated by a project devoted to superconductive hot-electron. bolometers which are of great independent value for the terahertz technology as high-sensitive picosecond detectors and low noise broad-band mixers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 24th European Microwave Conference
Notes Approved no
Call Number Serial 1635
Permanent link to this record
 

 
Author Ekstrom, H.; Karasik, B.; Weikle, R.; Yngvesson, K. S.; Gol’tsman, G.; Kollberg, E.; Gershenzon, E.
Title Mixers using superconducting Nb films in the resistive state Type Conference Article
Year 1993 Publication 23rd European Microwave Conf. Abbreviated Journal 23rd European Microwave Conf.
Volume Issue Pages 787-789
Keywords Nb HEB mixers
Abstract The mixing of 20 GHz radiation in a Nb superconducting film in the resistive state was studied. The experiment gave evidence of electron-heating to be the origin of the non-linear phenomenon. The requirements on the operation mode and on the film parameters in order to obtain small conversion losses or even gain are determined. Our measurements indicate a conversion loss of about 6-8 dB. The hot-electron bolometer is considered to be very promising for use in heterodyne receivers in a wide frequency range from microwaves to terahertz frequencies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1651
Permanent link to this record
 

 
Author Vachtomin, Y. B.; Antipov, S. V.; Maslennikov, S. N.; Smirnov, K. V.; Polyakov, S. L.; Zhang, W.; Svechnikov, S. I.; Kaurova, N. S.; Grishina, E. V.; Voronov, B. M.; Gol’tsman, G. N.
Title Quasioptical hot electron bolometer mixers based on thin NBN films for terahertz region Type Conference Article
Year 2006 Publication Proc. 16th Int. Crimean Microwave and Telecommunication Technology Abbreviated Journal Proc. 16th Int. Crimean Microwave and Telecommunication Technology
Volume 2 Issue Pages 688-689
Keywords NbN HEB mixers
Abstract Presented in this paper are the performances of HEB mixers based on 2-3.5 nm thick NbN films integrated with log-periodic spiral antenna. Double side-band receiver noise temperature values are 1300 K and 3100 K at 2.5 THz and at 3.8 THz, respectively. Mixer gain bandwidth is 5.2 GHz. Local oscillator power is 1-3 muW for mixers with different active area
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1445
Permanent link to this record
 

 
Author Вахтомин, Ю. Б.; Антипов, С. В.; Масленников, С. Н.; Смирнов, К. В.; Поляков, С. Л.; Чжан, В.; Свечников, С. И.; Каурова, Н. С.; Гришина, Е. В.; Воронов, Б. М.; Гольцман, Г. Н.
Title Квазиоптические смесители терагерцового диапазона на основе эффекта разогрева электронов в тонких пленках NbN Type Conference Article
Year 2006 Publication Proc. 16th Int. Crimean Microwave and Telecommunication Technology Abbreviated Journal
Volume 2 Issue Pages 688-689
Keywords NbN HEB mixers
Abstract Представлены результаты измерения рактеристик смесителей на эффекте разогрева электронов в тонких сверхпроводниковых пленках NbN. Смесители были изготовлены на основе пленок NbN толщиной 2-3.5 нм осажденных на кремниевую подложку с буферным подсло- ем MgO. Смесительный элемент согласовывался с планар- ной логопериодической спиральной антенной. Лучшее зна- чение шумовой температуры приемника на основе NbN смесителя составило 1300 К и 3100 К на частотах гетеро- дина 2.5 TГц и 3.8 ТГц, соответственно. Максимальное зна- чение полосы преобразования, измеренной на частоте 900 |Ц, достигло значения 5.2 ГГц для смесителя изготовлен- ного из NbN пленки толщиной 2 нм. Оптимальная мощность Представлены результаты измерения ха- гетеродинного источника составила 1-3 мкВт для смесите- лей с различным объемом смесительного элемента.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Duplicated as 1445 Approved no
Call Number Serial 1446
Permanent link to this record
 

 
Author Svechnikov, S. I.; Finkel, M. I.; Maslennikov, S. N.; Vachtomin, Y. B.; Smirnov, K. V.; Seleznev, V. A.; Korotetskaya, Y. P.; Kaurova, N. S.; Voronov, B. M.; Gol’tsman, G. N.
Title Superconducting hot electron bolometer mixer for middle IR range Type Conference Article
Year 2006 Publication Proc. 16th Int. Crimean Microwave and Telecommunication Technology Abbreviated Journal Proc. 16th Int. Crimean Microwave and Telecommunication Technology
Volume 2 Issue Pages 686-687
Keywords IR NbN HEB mixer, detector, GaAs substrate
Abstract The developed directly lens coupled hot electron bolometer (HEB) mixer was based on 5 nm superconducting NbN deposited on GaAs substrate. The layout of the structure, including 30x20 mcm^2 active area coupled with a 50 Ohm coplanar line, was patterned by photolithography. The responsivity of the mixer was measured in a direct detection mode in the 25-64 THz frequency range. The noise performance of the mixer and the directivity of the receiver were investigated in a heterodyne mode. A 10.6 mum wavelength CW CO2 laser was utilized as a local oscillator.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number 4023440 Serial 1297
Permanent link to this record
 

 
Author Kawamura, J.; Tong, C.-Y. E.; Blundell, R.; Papa, D. C.; Hunter, T. R.; Patt, F.; Gol’tsman, G.; Gershenzon, E.
Title Terahertz-frequency waveguide NbN hot-electron bolometer mixer Type Journal Article
Year 2001 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 11 Issue 1 Pages 952-954
Keywords NbN HEB mixers
Abstract We have developed a low-noise waveguide heterodyne receiver for operation near 1 THz using phonon-cooled NbN hot-electron bolometers. The mixer elements are submicron-sized microbridges of 4 nm-thick NbN film fabricated on a quartz substrate. Operating at a bath temperature of 4.2 K, the double-sideband receiver noise temperature is 760 K at 1.02 THz and 1100 K at 1.26 THz. The local oscillator is provided by solid-state sources, and power measured at the source is less than 1 /spl mu/W. The intermediate frequency bandwidth exceeds 2 GHz. The receiver was used to make the first ground-based heterodyne detection of a celestial spectroscopic line above 1 THz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1558-2515 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1546
Permanent link to this record
 

 
Author Semenov, A. D.; Goghidze, I. G.; Gol’tsman, G. N.; Sergeev, A. V.; Aksaev, E. E.; Gershenzon, E. M.
Title Non-equilibrium quasiparticle response to radiation and bolometric effect in YBaCuO films Type Journal Article
Year 1993 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 3 Issue 1 Pages 2132-2135
Keywords YBCO HTS HEB detectors
Abstract The voltage photoresponse of structured current biased YBCO films on different substrates to 20-ps laser pulses of 0.63- mu m and 1.54- mu m wavelengths and to continuously modulated radiation of 2-mm wavelength is measured to temperatures around Tc. Fast picosecond decay of the response to pulsed radiation is followed by slow exponential relaxation with a nanosecond characteristic time depending on the substrate material and film dimensions. The slow component does not depend on wavelength and is attributed to the bolometric effect, while the magnitude of the fast component associated with nonequilibrium response rises with wavelength. More than an order-of-magnitude increase of the nonequilibrium response is seen from near-infrared to millimeter-wave range. This dependence plausibly reflects the low efficiency of multiplication of photoexcited electrons in YBaCuO compared to conventional superconductors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1558-2515 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1659
Permanent link to this record
 

 
Author Gerecht, E.; Musante, C. F.; Zhuang, Y.; Yngvesson, K. S.; Gol’tsman, G. N.; Voronov, B. M.; Gershenzon, E. M.
Title NbN hot electron bolometric mixerss—a new technology for low-noise THz receivers Type Journal Article
Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 47 Issue 12 Pages 2519-2527
Keywords NbN HEB mixers
Abstract New advances in hot electron bolometer (HEB) mixers have recently resulted in record-low receiver noise temperatures at terahertz frequencies. We have developed quasi-optically coupled NbN HEB mixers and measured noise temperatures up to 2.24 THz, as described in this paper. We project the anticipated future performance of such receivers to have even lower noise temperature and local-oscillator power requirement as well as wider gain and noise bandwidths. We introduce a proposal for integrated focal plane arrays of HEB mixers that will further increase the detection speed of terahertz systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1557-9670 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1560
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol’tsman, G. N.; Gousev, Y. P.; Elant’ev, A. I.; Semenov, A. D.
Title Electromagnetic radiation mixer based on electron heating in resistive state of superconductive Nb and YBaCuO films Type Journal Article
Year 1991 Publication IEEE Trans. Magn. Abbreviated Journal IEEE Trans. Magn.
Volume 27 Issue 2 Pages 1317-1320
Keywords YBCO, HTS, Nb HEB mixers
Abstract A theory of an electron-heating mixer which makes it possible to calculate all the characteristics of the device is developed. It is shown that positive conversion gain is possible for such a mixer in the millimeter to near-infrared wavelength range. The dynamic range and the optimum heterodyne power can be selected from a very wide interval by varying the mixing element volume. Measurements made for Nb within the frequency range of 120-750 GHz confirm the theory. The conversion loss obtained at T=1.6 K and normalized to the element reaches 0.3 dB in the intermediate frequency band of 40 MHz; the possible noise temperature is 50 K. The estimation of noise temperature and output band for YBaCuO at T=77 yields 200 K and more than 10 GHz, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1941-0069 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1681
Permanent link to this record
 

 
Author Seliverstov, S. V.; Rusova, A. A.; Kaurova, N. S.; Voronov, B. M.; Goltsman, G. N.
Title Attojoule energy resolution of direct detector based on hot electron bolometer Type Conference Article
Year 2016 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 741 Issue Pages 012165 (1 to 5)
Keywords NbN HEB detector
Abstract We characterize superconducting antenna-coupled NbN hot-electron bolometer (HEB) for direct detection of THz radiation operating at a temperature of 9.0 K. At signal frequency of 2.5 THz, the measured value of the optical noise equivalent power is 2.0×10-13 W-Hz-0.5. The estimated value of the energy resolution is about 1.5 aJ. This value was confirmed in the experiment with pulsed 1.55-μm laser employed as a radiation source. The directly measured detector energy resolution is 2 aJ. The obtained risetime of pulses from the detector is 130 ps. This value was determined by the properties of the RF line. These characteristics make our detector a device-of-choice for a number of practical applications associated with detection of short THz pulses.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Seliverstov_2016 Serial 1337
Permanent link to this record
 

 
Author Antipov, S.; Trifonov, A.; Krause, S.; Meledin, D.; Kaurova, N.; Rudzinski, M.; Desmaris, V.; Belitsky, V.; Goltsman, G.
Title Improved bandwidth of a 2 THz hot-electron bolometer heterodyne mixer fabricated on sapphire with a GaN buffer layer Type Journal Article
Year 2019 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 32 Issue 7 Pages 075003
Keywords NbN HEB mixer, GaN buffer layer, sapphire substrate
Abstract We report on the signal-to-noise and gain bandwidth of a niobium nitride (NbN) hot-electron bolometer (HEB) mixer at 2 THz fabricated on a sapphire substrate with a GaN buffer layer. Two mixers with different DC properties and geometrical dimensions were studied and they demonstrated very close bandwidth performance. The signal-to-noise bandwidth is increased to 8 GHz in comparison to the previous results, obtained without a buffer-layer. The data were taken in a quasi-optical system with the use of the signal-to-noise method, which is close to the signal levels used in actual astrophysical observations. We find an increase of the gain bandwidth to 5 GHz. The results indicate that prior results obtained on a substrate of crystalline GaN can also be obtained on a conventional sapphire substrate with a few micron MOCVD-deposited GaN buffer-layer.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Antipov_2019 Serial 1277
Permanent link to this record
 

 
Author Пентин, И. В.; Смирнов, К. В.; Вахтомин, Ю. Б.; Смирнов, А. В.; Ожегов, Р. В.; Дивочий, А. В.; Гольцман, Г. Н.
Title Быстродействующий терагерцевый приемник и инфракрасный счетчик одиночных фотонов на эффекте разогрева электронов в сверхпроводниковых тонкопленочных наноструктурах Type Journal Article
Year 2011 Publication Труды МФТИ Abbreviated Journal Труды МФТИ
Volume 3 Issue 2 Pages 38-42
Keywords SSPD, SNSPD, HEB
Abstract Представлены результаты создания приемных систем терагерцевого диапазона (0.3-70 ТГц), обладающих рекордным быстродействием (50 пс) и высокой чувствительностью (до 5x 10^(-14) Вт/Гц^(1/2)), а также однофотонных приемных систем ближнего инфракрасного диапазона с квантовой эффективностью 25 %, уровнем темнового счета 10-1c., максимальной скоростью счета ~ 100 МГц и временным разрешением до 50 пс.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 707
Permanent link to this record
 

 
Author Goltsman, Gregory N.; Vachtomin, Yuriy B.; Antipov, Sergey V.; Finkel, Matvey I.; Maslennikov, Sergey N.; Polyakov, Stanislav L.; Svechnikov, Sergey I.; Kaurova, Natalia S.; Grishina, Elisaveta V.; Voronov, Boris M.
Title Low-noise NbN phonon-cooled hot-electron bolometer mixers for terahertz heterodyne receivers Type Conference Article
Year 2005 Publication Proc. 9-th WMSCI Abbreviated Journal Proc. 9-th WMSCI
Volume 9 Issue Pages 154-159
Keywords NbN HEB mixers
Abstract
Address
Corporate Author Thesis
Publisher International Institute of Informatics and Systemics Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 547
Permanent link to this record
 

 
Author Gao, J. R.; Hajenius, M.; Baselmans, J. J. A.; Yang, Z. Q.; Baryshev, A. M.; Barends, R.; Klapwijk, T. M.; Voronov, B.; Gol'tsman, G.; Callaos, N.
Title Twin-slot antenna coupled NbN hot electron bolometer mixers for space applications Type Conference Article
Year 2005 Publication Proc. 9-th WMSCI Abbreviated Journal Proc. 9-th WMSCI
Volume 9 Issue Pages 148-153
Keywords NbN HEB mixers
Abstract
Address
Corporate Author Thesis
Publisher International Institute of Informatics and Systemics Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 9806560639, 9789806560635 Medium
Area Expedition Conference 9th World Multi-Conference on Systemics, Cybernetics and Informatics
Notes Approved no
Call Number Serial 1480
Permanent link to this record
 

 
Author Hübers, Heinz-Wilhelm; Semenov, Alexei; Schubert, Josef; Gol'tsman, Gregory; Voronov, Boris; Gershenzon, Evgeni
Title Performance of the phonon-cooled hot-electron bolometric mixer between 0.7 THz and 5.2 THz Type Conference Article
Year 2000 Publication Proc. 8-th Int. Conf. on Terahertz Electronics Abbreviated Journal Proc. 8-th Int. Conf. on Terahertz Electronics
Volume Issue Pages 117-119
Keywords NbN HEB mixers
Abstract We report on the phonon cooled NbN hot electron bolometer as mixer in the terahertz frequency range. Its hybrid antenna consists of a hyperhemispheric silicon lens and a logarithmic-spiral feed antenna. Noise temperatures have been measured between 0.7 THz and 5.2 THz. A quarter wavelength layer of Parylene works as antireflection coating for the silicon lens and reduces the noise temperature by about 30. It was found that the antenna pattern at 2.5 THz is determined by the feed antenna and not by the diameter of the lens.
Address Darmstadt, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference International Conference on Terahertz Electronics [8th], Held inDarmstadt, Germany on 28-29 September 2000
Notes Approved no
Call Number Serial 1553
Permanent link to this record
 

 
Author Gerecht, E.; Musante, C. F.; Yngvesson, K. S.; Waldman, J.; Gol'tsman, G. N.; Yagoubov, P. A.; Voronov, B. M.; Gershenzon, E. M.
Title Optical coupling and conversion gain for NbN HEB mixer at THz frequencies Type Conference Article
Year 1997 Publication Proc. 4-th Int. Semicond. Device Research Symp. Abbreviated Journal Proc. 4-th Int. Semicond. Device Research Symp.
Volume Issue Pages 47-50
Keywords NbN HEB mixers
Abstract
Address Charlottesville, Virginia
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1601
Permanent link to this record
 

 
Author Verevkin, A. A.; Ptitsina, N. G.; Smirnov, K. V.; Gol'tsman, G. N.; Voronov, B. M.; Gershenzon, E. M.; Yngvesson, K. S.
Title Hot electron bolometer detectors and mixers based on a superconducting-two-dimensional electron gas-superconductor structure Type Conference Article
Year 1997 Publication Proc. 4-th Int. Semicond. Device Research Symp. Abbreviated Journal Proc. 4-th Int. Semicond. Device Research Symp.
Volume Issue Pages 163-166
Keywords S-2DEG-S HEB mixers, detectors, AlGaAs/GaAs heterostructures, NbN
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1603
Permanent link to this record
 

 
Author Cherednichenko, S.; Drakinskiy, V.; Baubert, J.; Krieg, J.-M.; Voronov, B.; Gol'tsman, G.; Desmaris, V.
Title Gain bandwidth of NbN hot-electron bolometer terahertz mixers on 1.5 μm Si3N4 / SiO2 membranes Type Journal Article
Year 2007 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 101 Issue 12 Pages 124508 (1 to 6)
Keywords HEB, mixer, membrane
Abstract The gain bandwidth of NbN hot-electron bolometer terahertz mixers on electrically thin Si3N4/SiO2 membranes was experimentally investigated and compared with that of HEB mixers on bulk substrates. A gain bandwidth of 3.5 GHz is achieved on bulk silicon, whereas the gain bandwidth is reduced down to 0.6–0.9 GHz for mixers on 1.5 μm Si3N4/SiO2 membranes. We show that application of a MgO buffer layer on the membrane extends the gain bandwidth to 3 GHz. The experimental data were analyzed using the film-substrate acoustic mismatch approach.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 560
Permanent link to this record
 

 
Author Yagoubov, P.; Kroug, M.; Merkel, H.; Kollberg, E.; Gol'tsman, G.; Svechnikov, S.; Gershenzon, E.
Title Noise temperature and local oscillator power requirement of NbN phonon-cooled hot electron bolometric mixers at terahertz frequencies Type Journal Article
Year 1998 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 73 Issue 19 Pages 2814-2816
Keywords NbN HEB mixers, noise temperature, local oscillator power
Abstract In this letter, the noise performance of NbN-based phonon-cooled hot electron bolometric quasioptical mixers is investigated in the 0.55–1.1 THz frequency range. The best results of the double-sideband <cd><2018>DSB<cd><2019> noise temperature are: 500 K at 640 GHz, 600 K at 750 GHz, 850 K at 910 GHz, and 1250 K at 1.1 THz. The water vapor in the signal path causes significant contribution to the measured receiver noise temperature around 1.1 THz. The devices are made from 3-nm-thick NbN film on high-resistivity Si and integrated with a planar spiral antenna on the same substrate. The in-plane dimensions of the bolometer strip are typically 0.2Ï«2 um. The amount of local oscillator power absorbed in the bolometer is less than 100 nW.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 911
Permanent link to this record
 

 
Author Ekstörm, H.; Kollberg, E.; Yagoubov, P.; Gol'tsman, G.; Gershenzon, E.; Yngvesson, S.
Title Gain and noise bandwidth of NbN hot-electron bolometric mixers Type Journal Article
Year 1997 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 70 Issue 24 Pages 3296-3298
Keywords NbN HEB mixers, conversion loss, conversion gain, U-factor technique
Abstract We have measured the noise performance and gain bandwidth of 35 Å thin NbN hot-electron mixers integrated with spiral antennas on silicon substrate lenses at 620 GHz. The best double-sideband receiver noise temperature is less than 1300 K with a 3 dB bandwidth of ≈5 GHz. The gain bandwidth is 3.2 GHz. The mixer output noise dominated by thermal fluctuations is 50 K, and the intrinsic conversion gain is about −12 dB. Without mismatch losses and excluding the loss from the beamsplitter, we expect to achieve a receiver noise temperature of less than 700 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 279
Permanent link to this record
 

 
Author Lindgren, M.; Zorin, M. A.; Trifonov, V.; Danerud, M.; Winkler, D.; Karasik, B. S.; Gol'tsman, G. N.; Gershenzon, E. M.
Title Optical mixing in a patterned YBa2Cu3O7-δ thin film Type Journal Article
Year 1994 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 65 Issue 26 Pages 3398-3400
Keywords YBCO HTS HEB mixer, bandwidth
Abstract Mixing of 1.56 µm infrared radiation from two lasers in a high quality YBa2Cu3O7-δ thin film, patterned to parallel strips, was demonstrated. A mixer bandwidth of 18 GHz, limited by the measurement system, was obtained. A model based on nonequilibrium electron heating gives a good fit to the data and predicts an intrinsic mixer bandwidth in excess of 100 GHz, operating in the whole infrared spectrum. Reduction of bolometric effects and ways to decrease the conversion loss of the mixer is discussed. The minimum conversion loss is expected to be ~10 dB.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 251
Permanent link to this record
 

 
Author Chen, J.; Kang, L.; Jin, B. B.; Xu, W. W.; Wu, P. H.; Zhang, W.; Jiang, L.; Li, N.; Shi, S. C.; Gol'tsman, G. N.
Title Properties of terahertz superconducting hot electron bolometer mixers Type Journal Article
Year 2008 Publication Int. J. Terahertz Sci. Technol. Abbreviated Journal Int. J. Terahertz Sci. Technol.
Volume 1 Issue 1 Pages 37-41
Keywords NbN HEB mixers, noise temperature
Abstract A quasi-optical superconducting niobium nitride (NbN) hot electron bolometer (HEB) mixer has been fabricated and measured in the terahertz (THz) frequency range of 0.5~2.52 THz. A receiver noise temperature of 2000 K at 2.52 THz has been obtained for the mixer without corrections. Also, the effect of a Parylene C anti-reflection (AR) coating on the silicon (Si) lens has been studied.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1417
Permanent link to this record
 

 
Author Gol’tsman, G.N.
Title Overview of recent results for superconducting NbN terahertz and optical detectors and mixers Type Miscellaneous
Year 2014 Publication SM2 – Seminar on Terahertz Photonics Abbreviated Journal
Volume Issue Pages 0562
Keywords NbN SSPD, SNSPD, HEB
Abstract We present our recent achievements in the development of sensitive and ultrafast thin-film superconducting sensors: hot-electron bolometers (HEB), HEB-mixers for terahertz range and infrared single-photon counters. These sensors have already demonstrated a performance that makes them devices-of-choice for many terahertz and optical applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1746
Permanent link to this record
 

 
Author Finkel, M. I.; Maslennikov, S. N.; Gol'tsman, G. N.
Title The concept of the receiving complex for the “Millimetron” space radio telescope Type Journal Article
Year 2007 Publication Radiophys. Quant. Electron. Abbreviated Journal Radiophys. Quant. Electron.
Volume 50 Issue 10-11 Pages 837-846
Keywords HEB, applications, Millimetron, VLBI
Abstract We consider the current status of research in the development of a submillimeter and far-infrared receiving instrument and propose promising solutions for the receivers of the spaceborne telescope “Millimetron,” which allow one to realize comprehensively the opportunities given by this international project administrated by the Astrospace Center of the P. N. Lebedev Physical Institute of the Russian Academy of Sciences.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0033-8443 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 411
Permanent link to this record
 

 
Author Finkel, M. I.; Maslennikov, S. N.; Gol'tsman, G. N.
Title Terahertz heterodyne receivers based on superconductive hot-electron bolometer mixers Type Journal Article
Year 2005 Publication Radiophys. Quant. Electron. Abbreviated Journal Radiophys. Quant. Electron.
Volume 48 Issue 10-11 Pages 859-864
Keywords HEB, applications
Abstract We consider recent results in development of hot-electron bolometer mixers. Special attention is paid to optimization of the contacts between the antenna and the active area of a superconducting film. An important result in the study of the parasitic effect of direct detection is obtained during the measurement of the noise temperatures by the hot/cold load method. The latest results of studies of the waveguide hot-electron bolometer mixers and their successful practical applications are considered. Progress in development of high-frequency (over 1.3 THz) heterodyne receivers for several important international projects is discussed and new submillimeter radio astronomy projects ESPRIT and SAFIR are described.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0033-8443 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 381
Permanent link to this record
 

 
Author Cherednichenko, S.; Drakinskiy, V.
Title Low noise hot-electron bolometer mixers for terahertz frequencies Type Journal Article
Year 2008 Publication J. Low Temp. Phys. Abbreviated Journal J. Low Temp. Phys.
Volume 151 Issue 1-2 Pages 575-579
Keywords HEB, mixer, gain bandwidth, MgB2
Abstract Hot-electron bolometer (HEB) mixers are used in many low noise heterodyne radio astronomical receivers. Their noise temperature is at the level of 10–15 times the quantum limit. However, their gain bandwidth is a serious limiting factor. Here we review the state of the art of the HEB mixers gain bandwidth for different materials and substrates. We compare the gain bandwidth of HEB mixers made on bulk substrates and thin membranes. Finally, results for MgB2 thin films for broadband HEB mixers are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2291 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ lobanovyury @ Serial 553
Permanent link to this record
 

 
Author Martini, F.; Cibella, S.; Gaggero, A.; Mattioli, F.; Leoni, R.
Title Waveguide integrated hot electron bolometer for classical and quantum photonics Type Journal Article
Year 2021 Publication Opt. Express Abbreviated Journal Opt. Express
Volume 29 Issue 6 Pages 7956-7965
Keywords waveguide HEB
Abstract The development of performant integrated detectors, which are sensitive to quantum fluctuations of coherent light, are strongly desired to realize a scalable and determinist photonic quantum processor based on continuous variables states of light. Here, we investigate the performance of hot electron bolometers (HEBs) fabricated on top of a silicon-on-insulator (SOI) photonic circuit showing responsivities up to 8600 V/W and a record noise equivalent temperature of 1.1 dB above the quantum limit. Thanks to a detailed analysis of the noise sources of the waveguide integrated HEB, we estimate 14.8 dBV clearance between the shot noise and electrical noise with just 1.1microW of local oscillator power. The full technology compatibility with superconducting nanowire single photon detectors (SNSPDs) opens the possibility of nonclassical state engineering and state tomography performed within the same platform, enabling a new class of optical quantum processors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1094-4087 ISBN Medium
Area Expedition Conference
Notes PMID:33820252 Approved no
Call Number Serial 1212
Permanent link to this record
 

 
Author Pentin, I.; Vakhtomin, Y.; Seleznev, V.; Smirnov, K.
Title Hot electron energy relaxation time in vanadium nitride superconducting film structures under THz and IR radiation Type Journal Article
Year 2020 Publication Sci. Rep. Abbreviated Journal Sci. Rep.
Volume 10 Issue 1 Pages 16819
Keywords VN HEB
Abstract The paper presents the experimental results of studying the dynamics of electron energy relaxation in structures made of thin (d approximately 6 nm) disordered superconducting vanadium nitride (VN) films converted to a resistive state by high-frequency radiation and transport current. Under conditions of quasi-equilibrium superconductivity and temperature range close to critical (~ Tc), a direct measurement of the energy relaxation time of electrons by the beats method arising from two monochromatic sources with close frequencies radiation in sub-THz region (omega approximately 0.140 THz) and sources in the IR region (omega approximately 193 THz) was conducted. The measured time of energy relaxation of electrons in the studied VN structures upon heating of THz and IR radiation completely coincided and amounted to (2.6-2.7) ns. The studied response of VN structures to IR (omega approximately 193 THz) picosecond laser pulses also allowed us to estimate the energy relaxation time in VN structures, which was ~ 2.8 ns and is in good agreement with the result obtained by the mixing method. Also, we present the experimentally measured volt-watt responsivity (S~) within the frequency range omega approximately (0.3-6) THz VN HEB detector. The estimated values of noise equivalent power (NEP) for VN HEB and its minimum energy level (deltaE) reached NEP@1MHz approximately 6.3 x 10(-14) W/ radicalHz and deltaE approximately 8.1 x 10(-18) J, respectively.
Address National Research University Higher School of Economics, 20 Myasnitskaya Str., Moscow, 101000, Russia
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:33033360; PMCID:PMC7546726 Approved no
Call Number Serial 1797
Permanent link to this record
 

 
Author Kitaeva, G. K.; Kornienko, V. V.; Kuznetsov, K. A.; Pentin, I. V.; Smirnov, K. V.; Vakhtomin, Y. B.
Title Direct detection of the idler THz radiation generated by spontaneous parametric down-conversion Type Journal Article
Year 2019 Publication Opt. Lett. Abbreviated Journal Opt. Lett.
Volume 44 Issue 5 Pages 1198-1201
Keywords HEB applications
Abstract We study parametric down-conversion (PDC) of optical laser radiation in the strongly frequency non-degenerate regime which is promising for the generation of quantum-correlated pairs of extremely different spectral ranges, the optical and the terahertz (THz) ones. The possibility to detect tenuous THz-frequency photon fluxes generated under low-gain spontaneous PDC is demonstrated using a hot electron bolometer. Then experimental dependences of the THz radiation power on the detection angle and on the pump intensity are analyzed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0146-9592 ISBN Medium
Area Expedition Conference
Notes PMID:30821747 Approved no
Call Number Serial 1801
Permanent link to this record
 

 
Author Wei, Jian; Olaya, David; Karasik, Boris S.; Pereverzev, Sergey V.; Sergeev, Andrei V.; Gershenson, Michael E.
Title Ultrasensitive hot-electron nanobolometers for terahertz astrophysics Type Journal Article
Year 2008 Publication Nature Nanotechnology Abbreviated Journal Nature Nanotech
Volume 3 Issue 8 Pages 496-500
Keywords HEB, Ti/NbN, single terahertz photons, detection
Abstract The submillimetre or terahertz region of the electromagnetic spectrum contains approximately half of the total luminosity of the Universe and 98% of all the photons emitted since the Big Bang. This radiation is strongly absorbed in the Earth's atmosphere, so space-based terahertz telescopes are crucial for exploring the evolution of the Universe. Thermal emission from the primary mirrors in these telescopes can be reduced below the level of the cosmic background by active cooling, which expands the range of faint objects that can be observed. However, it will also be necessary to develop bolometers – devices for measuring the energy of electromagnetic radiation—with sensitivities that are at least two orders of magnitude better than the present state of the art. To achieve this sensitivity without sacrificing operating speed, two conditions are required. First, the bolometer should be exceptionally well thermally isolated from the environment;

second, its heat capacity should be sufficiently small. Here we demonstrate that these goals can be achieved by building a superconducting hot-electron nanobolometer. Its design eliminates the energy exchange between hot electrons and the leads by blocking electron outdiffusion and photon emission. The thermal conductance between hot electrons and the thermal bath, controlled by electron–phonon interactions, becomes very small at low temperatures (10-16 WK-1 at 40 mK). These devices, with a heat capacity of 10-19 J K-1, are sufficiently sensitive to detect single terahertz photons in submillimetre astronomy and other applications based on quantum calorimetry and photon counting.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-3387 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 576
Permanent link to this record