|   | 
Details
   web
Records
Author Anfertev, V.; Vaks, V.; Revin, L.; Pentin, I.; Tretyakov, I.; Goltsman, G.; Vinogradov, E. A.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R.
Title High resolution THz gas spectrometer based on semiconductor and superconductor devices Type Conference Article
Year 2017 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.
Volume 132 Issue Pages 02001 (1 to 2)
Keywords NbN HEB mixers, detectors, THz spectroscopy
Abstract The high resolution THz gas spectrometer consists of a synthesizer based on Gunn generator with a semiconductor superlattice frequency multiplier as a radiation source, and an NbN hot electron bolometer in a direct detection mode as a THz radiation receiver was presented. The possibility of application of a quantum cascade laser as a local oscillator for a heterodyne receiver which is based on an NbN hot electron bolometer mixer is shown. The ways for further developing of the THz spectroscopy were outlined.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1328
Permanent link to this record
 

 
Author Hajenius, M.; Baselmans, J. J. A.; Gao, J. R.; Klapwijk, T. M.; de Korte, P. A. J.; Voronov, B.; Gol'tsman, G.
Title Low noise NbN superconducting hot electron bolometer mixers at 1.9 and 2.5 THz Type Journal Article
Year 2004 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 17 Issue 5 Pages S224-S228
Keywords NbN HEB mixers
Abstract NbN phonon-cooled hot electron bolometer mixers (HEBs) have been realized with negligible contact resistance between the bolometer itself and the contact structure. Using a combination of in situ cleaning of the NbN film and the use of an additional superconducting interlayer of a 10 nm NbTiN layer between the Au of the contact structure and the NbN film superior noise temperatures have been obtained as low as 950 K at 2.5 THz and 750 K at 1.9 THz. Here we address in detail the DC characterization of these devices, the interface transparencies between the bolometers and the contacts and the consequences of these factors on the mixer performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 558
Permanent link to this record
 

 
Author Jiang, L.; Zhang, W.; Yao, Q. J.; Lin, Z. H.; Li, J.; Shi, S. C.; Svechnikov, S. I.; Vachtomin, Y. B.; Antipov, S. V.; Voronov, B. M.; Kaurova, N. S.; Gol'tsman, G. N.
Title Characterization of a quasi-optical NbN superconducting hot-electron bolometer mixer Type Conference Article
Year 2005 Publication Proc. PIERS Abbreviated Journal Proc. PIERS
Volume 1 Issue 5 Pages 587-590
Keywords NbN HEB mixers
Abstract In this paper, we report the performance of a quasi-optical NbN superconducting HEB (hot electron bolome-ter) mixer measured at 500 GHz. The quasi-optical NbN superconducting HEB mixer is cryogenically cooled bya 4-K close-cycled refrigerator. Its receiver noise temperature and conversion gain are thoroughly investigatedfor different LO pumping levels and dc biases. The lowest receiver noise temperature is found to be approxi-mately 1200 K, and reduced to about 445 K after correcting theloss of the measurement system. The stabilityof the mixer’s IF output power is also demonstrated.
Address Hangzhou, China
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1931-7360 ISBN Medium
Area Expedition Conference Progress In Electromagnetics Research Symposium
Notes Approved no
Call Number Serial 1482
Permanent link to this record
 

 
Author Gol'tsman, G.; Maslennikov, S.; Finkel, M.; Antipov, S.; Kaurova, N.; Grishina, E.; Polyakov, S.; Vachtomin, Y.; Svechnikov, S.; Smirnov, K.; Voronov, B.
Title Nanostructured ultrathin NbN film as a terahertz hot-electron bolometer mixer Type Conference Article
Year 2006 Publication Proc. MRS Abbreviated Journal Proc. MRS
Volume 935 Issue Pages 210 (1 to 6)
Keywords NbN HEB mixers
Abstract Planar spiral antenna coupled and directly lens coupled NbN HEB mixer structures are studied. An additional MgO buffer layer between the superconducting film and Si substrate is introduced. The buffer layer enables us to increase the gain bandwidth of a HEB mixer due to better acoustic transparency. The gain bandwidth is widened as NbN film thickness decreases and amounts to 5.2 GHz. The noise temperature of antenna coupled mixer is 1300 and 3100 K at 2.5 and 3.8 THz respectively. The structure and composition of NbN films is investigated by X-ray diffraction spectroscopy methods. Noise performance degradation at LO frequencies more than 3 THz is due to the use of a planar antenna and signal loss in contacts between the antenna and the sensitive NbN bridge. The mixer is reconfigured for operation at higher frequencies in a manner that receiver’s noise temperature is only 2300 K (3 times of quantum limit) at LO frequency of 30 THz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0272-9172 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1440
Permanent link to this record
 

 
Author Tret’yakov, I. V.; Ryabchun, S. A.; Kaurova, N. S.; Larionov, P. A.; Lobastova, A. A.; Voronov, B. M.; Finkel, M. I.; Gol’tsman, G. N.
Title Optimum absorbed heterodyne power for superconducting NbN hot-electron bolometer mixer Type Journal Article
Year 2010 Publication Tech. Phys. Lett. Abbreviated Journal Tech. Phys. Lett.
Volume 36 Issue 12 Pages 1103-1105
Keywords NbN HEB mixer
Abstract Absorbed heterodyne power has been measured in a low-noise broadband hot-electron bolometer (HEB) mixer for the terahertz range, operating on the effect of electron heating in the resistive state of an ultrathin superconducting NbN film. It is established that the optimum absorbed heterodyne power for the HEB mixer operating at 2.5 THz is about 100 nW.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-7850 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1389
Permanent link to this record
 

 
Author Pentin, I. V.; Smirnov, A. V.; Ryabchun, S. A.; Ozhegov, R. V.; Gol’tsman, G. N.; Vaks, V. L.; Pripolzin, S. I.; Pavel’ev, D. G.; Koshurinov, Y. I.; Ivanov, A. S.
Title Semiconducting superlattice as a solid-state terahertz local oscillator for NbN hot-electron bolometer mixers Type Journal Article
Year 2012 Publication Tech. Phys. Abbreviated Journal Tech. Phys.
Volume 57 Issue 7 Pages 971-974
Keywords semiconducting superlattice frequency multiplier, NbN HEB mixers
Abstract We present the results of our studies of the semiconducting superlattice (SSL) frequency multiplier and its application as part of the solid state local oscillator (LO) in the terahertz heterodyne receiver based on a NbN hot-electron bolometer (HEB) mixer. We show that the SSL output power level increases as the ambient temperature is lowered to 4.2 K, the standard HEB operation temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-7842 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1378
Permanent link to this record
 

 
Author Tretyakov, I. V.; Anfertyev, V. A.; Revin, L. S.; Kaurova, N. S.; Voronov, B. M.; Vaks, V. L.; Goltsman, G. N.
Title Sensitivity and resolution of a heterodyne receiver based on the NbN HEB mixer with a quantum-cascade laser as a local oscillator Type Journal Article
Year 2018 Publication Radiophys. Quant. Electron. Abbreviated Journal Radiophys. Quant. Electron.
Volume 60 Issue 12 Pages 988-992
Keywords NbN HEB mixer
Abstract We present the results of experimental studies of the basic characteristics and operation features of a terahertz heterodyne detector based on the superconducting NbN HEB mixer and a quantum cascade laser as a local oscillator operating at a frequency of 2.02 THz. The measured noise temperature of such a mixer amounted to 1500 K. The spectral resolution of the detector is determined by the width of the local-oscillator spectral line whose measured value does not exceed 1 MHz. The quantum-cascade laser could be linearly tuned with respect to frequency with the coefficient 7.2 MHz/mA within the limits of the current oscillation bandwidth.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0033-8443 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1307
Permanent link to this record
 

 
Author Seliverstov, S. V.; Anfertyev, V. A.; Tretyakov, I. V.; Ozheredov, I. A.; Solyankin, P. M.; Revin, L. S.; Vaks, V. L.; Rusova, A. A.; Goltsman, G. N.; Shkurinov, A. P.
Title Terahertz heterodyne receiver with an electron-heating mixer and a heterodyne based on the quantum-cascade laser Type Journal Article
Year 2017 Publication Radiophys. Quant. Electron. Abbreviated Journal Radiophys. Quant. Electron.
Volume 60 Issue 7 Pages 518-524
Keywords NbN HEB mixer, QCL
Abstract We study characteristics of the laboratory prototype of a terahertz heterodyne receiver with an electron-heating mixer and a heterodyne based on the quantum-cascade laser. The results obtained demonstrate the possibility to use this receiver as a basis for creation of a high-sensitivity terahertz spectrometer, which can be used in many basic and practical applications. A significant advantage of this receiver will be the possibility of placing the mixer and heterodyne in the same cryostat, which will reduce the device dimensions considerably. The obtained experimental results are analyzed, and methods of optimizing the parameters of the receiver are proposed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0033-8443 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1322
Permanent link to this record
 

 
Author Gousev, Y. P.; Gol'tsman, G. N.; Karasik, B. S.; Gershenzon, E. M.; Semenov, A. D.; Barowski, H. S.; Nebosis, R. S.; Renk, K. F.
Title Quasioptical superconducting hot electron bolometer for submillmeter waves Type Journal Article
Year 1996 Publication Int. J. of Infrared and Millimeter Waves Abbreviated Journal Int. J. of Infrared and Millimeter Waves
Volume 17 Issue 2 Pages 317-331
Keywords NbN HEB
Abstract We report on a superconducting hot electron bolometer coupled to radiation via a broadband antenna. The bolometer, a structured NbN film, was patterned on a thin dielectric membrane between terminals of a gold slotline antenna. We investigated the response to submillimeter radiation (wave-lengths ∼ 0.1 mm to 0.7 mm) in the fundamental Gaussian mode. We found that the directivity of the antenna was constant within a factor of 2.5 through the whole experimental range. The noise equivalent power of the bolometer at 119 µm was ∼ 3 · 10−13 W/Hz1/2; a time constant of ∼ 160 ps was estimated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0195-9271 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1618
Permanent link to this record
 

 
Author Pentin, Ivan; Finkel, Matvey; Maslennikov, Sergey; Vakhtomin, Yuri; Smirnov, Konstantin; Kaurova, Nataliya; Goltsman, Gregory
Title Superconducting hot-electron-bolometer mixers for the mid-IR Type Journal Article
Year 2017 Publication Rus. J. Radio Electron. Abbreviated Journal Rus. J. Radio Electron.
Volume Issue 10 Pages
Keywords IR NbN HEB mixers
Abstract The work presents the result of development of the NbN superconducting hot-electron-bolometer (HEB) mixer. The sensitive element of the mixer is directly coupled to mid-IR radiation, and doesn’t have planar metallic antenna. Investigations of noise characteristics of NbN HEB mixer were performed at the frequency 28.4 THz (λ = 10.6 µm) by using gas-discharge CW CO2-laser without consideration of optical and electrical losses in the heterodyne receiver. The noise temperature of NbN HEB mixer with the size of the sensitive element 10 µm × 10 µm was 2320 K (~ 1.5hν/kB) at the heterodyne frequency of 28.4 THz. The noise temperature was determined by measuring the Y-factor taking into account the term which describes fluctuations of zero-point oscillations in accordance with the fluctuation-dissipation theorem of Calle-Welton. Isothermal method was used to estimate the absorbed heterodyne radiation power which was 9 µW at the optimal operating point for the minimum noise temperature of NbN HEB mixer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1684-1719 ISBN Medium
Area Expedition Conference
Notes http://jre.cplire.ru/jre/oct17/9/abstract.html (Russian) Гетеродинный приемник со сверхпроводниковым смесителем на эффекте электронного разогрева для среднего инфракрасного диапазона Approved no
Call Number Serial 1747
Permanent link to this record
 

 
Author Kawamura, J.; Blundell, R.; Tong, C.-Y. E.; Papa, D. C.; Hunter, T. R.; Paine, S. N.; Patt, F.; Gol'tsman, G.; Cherednichenko, S.; Voronov, B.; Gershenzon, E.
Title Superconductive hot-electron-bolometer mixer receiver for 800-GHz operation Type Journal Article
Year 2000 Publication IEEE Trans. Microw. Theory Techn. Abbreviated Journal IEEE Trans. Microw. Theory Techn.
Volume 48 Issue 4 Pages 683-689
Keywords NbN HEB mixers, LO power, local oscillator power, saturation, linearity, dynamic range
Abstract In this paper, we describe a superconductive hot-electron-bolometer mixer receiver designed to operate in the partially transmissive 350-μm atmospheric window. The receiver employs an NbN thin-film microbridge as the mixer element, in which the main cooling mechanism of the hot electrons is through electron-phonon interaction. At a local-oscillator frequency of 808 GHz, the measured double-sideband receiver noise temperature is TRX=970 K, across a 1-GHz intermediate-frequency bandwidth centered at 1.8 GHz. We have measured the linearity of the receiver and the amount of local-oscillator power incident on the mixer for optimal operation, which is PLO≈1 μW. This receiver was used in making observations as a facility instrument at the Heinrich Hertz Telescope, Mt. Graham, AZ, during the 1998-1999 winter observing season.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9480 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ lobanovyury @ Serial 573
Permanent link to this record
 

 
Author Tong, C. E.; Blundell, R.; Papa, D. C.; Smith, M.; Kawamura, J.; Gol'tsman, G.; Gershenzon, E.; Voronov, B.
Title An all solid-state superconducting heterodyne receiver at terahertz frequencies Type Journal Article
Year 1999 Publication IEEE Microw. Guid. Wave Lett. Abbreviated Journal IEEE Microw. Guid. Wave Lett.
Volume 9 Issue 9 Pages 366-368
Keywords waveguide NbN HEB mixers
Abstract A superconducting hot-electron bolometer mixer-receiver operating from 1 to 1.26 THz has been developed. This heterodyne receiver employs two solid-state local oscillators each consisting of a Gunn oscillator followed by two stages of varactor frequency multiplication. The measured receiver noise temperature is 1350 K at 1.035 THz and 2700 K at 1.26 THz. This receiver demonstrates that tunable solid-state local oscillators, supplying only a few micro-watts of output power, can be used in terahertz receiver applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8207 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1565
Permanent link to this record
 

 
Author Trifonov, A.; Tong, C.-Y. E.; Grimes, P.; Lobanov, Y.; Kaurova, N.; Blundell, R.; Goltsman, G.
Title Development of a silicon membrane-based multipixel hot electron bolometer receiver Type Journal Article
Year 2017 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 27 Issue 4 Pages 1-5
Keywords Multi-pixel, NbN HEB, silicon-on-insulator, horn array
Abstract We report on the development of a multipixel hot electron bolometer (HEB) receiver fabricated using silicon membrane technology. The receiver comprises a 2 × 2 array of four HEB mixers, fabricated on a single chip. The HEB mixer chip is based on a superconducting NbN thin-film deposited on top of the silicon-on-insulator (SOI) substrate. The thicknesses of the device layer and handling layer of the SOI substrate are 20 and 300 μm, respectively. The thickness of the device layer is chosen such that it corresponds to a quarter-wave in silicon at 1.35 THz. The HEB mixer is integrated with a bow-tie antenna structure, in turn designed for coupling to a circular waveguide, fed by a monolithic drilled smooth-walled horn array.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1324
Permanent link to this record
 

 
Author Gerecht, E.; Musante, C. F.; Jian, H.; Yngvesson, K. S.; Dickinson, J.; Waldman, J.; Yagoubov, P. A.; Gol'tsman, G. N.; Voronov, B. M.; Gershenzon, E. M.
Title New results for NbN phonon-cooled hot electron bolometric mixers above 1 THz Type Journal Article
Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 9 Issue 2 Pages 4217-4220
Keywords NbN HEB mixers
Abstract NbN Hot Electron Bolometric (HEB) mixers have produced promising results in terms of DSB receiver noise temperature (2800 K at 1.56 THz). The LO source for these mixers is a gas laser pumped by a CO/sub 2/ laser and the device is quasi-optically coupled through an extended hemispherical lens and a self-complementary log-periodic toothed antenna. NbN HEBs do not require submicron dimensions, can be operated comfortably at 4.2 K or higher, and require LO power of about 100-500 nW. IF noise bandwidths of 5 GHz or greater have been demonstrated. The DC bias point is also not affected by thermal radiation at 300 K. Receiver noise temperatures below 1 THz are typically 450-600 K and are expected to gradually approach these levels above 1 THz as well. NbN HEB mixers thus are rapidly approaching the type of performance required of a rugged practical receiver for astronomy and remote sensing in the THz region.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1568
Permanent link to this record
 

 
Author Yagoubov, P.; Kroug, M.; Merkel, H.; Kollberg, E.; Schubert, J.; Hubers, H.-W.; Schwaab, G.; Gol'tsman, G.; Gershenzon, E.
Title Heterodyne measurements of a NbN superconducting hot electron mixer at terahertz frequencies Type Journal Article
Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 9 Issue 2 Pages 3757-3760
Keywords NbN HEB mixers
Abstract The performance of a NbN based phonon-cooled Hot Electron Bolometric (HEB) quasioptical mixer is investigated in the 0.65-3.12 THz frequency range. The device is made from a 3 nm thick NbN film on high resistivity Si and integrated with a planar spiral antenna on the same substrate. The in-plane dimensions of the bolometer strip are 0.2/spl times/2 /spl mu/m. The best results of the DSB noise temperature at 1.5 GHz IF frequency obtained with one device are: 1300 K at 650 GHz, 4700 K at 2.5 THz and 10000 K at 3.12 THz. The measurements were performed at 4.5 K ambient temperature. The amount of local oscillator (LO) power absorbed in the bolometer is about 100 nW. The mixer is linear to within 1 dB compression up to the signal level 10 dB below that of the LO. The intrinsic single sideband conversion gain measured at 650 GHz is -9 dB, the total conversion gain is -14 dB.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1569
Permanent link to this record