|   | 
Details
   web
Records
Author Marsili, Francesco; Bitauld, David; Fiore, Andrea; Gaggero, Alessandro; Mattioli, Francesco; Leoni, Roberto; Divochiy, Aleksander; Gol'tsman, Gregory
Title Photon-number-resolution at telecom wavelength with superconducting nanowires Type Miscellaneous
Year 2010 Publication IntechOpen Abbreviated Journal
Volume Issue Pages
Keywords SSPD, SNSPD
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ sasha @ marsiliphoton Serial 1036
Permanent link to this record
 

 
Author Słysz, W.; Węgrzecki, M.; Bar, J.; Grabiec, P.; Gol'tsman, G. N.; Verevkin, A.; Sobolewski, R.
Title NbN superconducting single-photon detector coupled with a communication fiber Type Journal Article
Year 2005 Publication Elektronika : konstrukcje, technologie, zastosowania Abbreviated Journal
Volume 46 Issue 6 Pages 51-52
Keywords NbN SSPD, SNSPD
Abstract We present novel superconducting single-photon detectors (SSPDs), ba­sed on ultrathin NbN films, designed for fiber-based quantum communica­tions (lambda = 1.3 žm and 1.55 žm). For fiber-based operation, our SSPDs contain a special micromechanical construction integrated with the NbN structure, which enables efficient and mechanically very stabile fiber coupling. The detectors combine GHz counting rate, high quantum efficiency and very low level of dark counts. At 1.3 – 1.55 žm wavelength range our detector exhibits a quantum efficiency up to 10%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Polish Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1481
Permanent link to this record
 

 
Author Semenov, A.; Engel, A.; Il'in, K.; Gol'tsman, G.; Siegel, M.; Hübers, H.-W.
Title Ultimate performance of a superconducting quantum detector Type Journal Article
Year 2003 Publication Eur. Phys. J. Appl. Phys. Abbreviated Journal Eur. Phys. J. Appl. Phys.
Volume 21 Issue 3 Pages 171-178
Keywords NbN SSPD, SNSPD
Abstract We analyze the ultimate performance of a superconducting quantum detector in order to meet requirements for applications in near-infrared astronomy and X-ray spectroscopy. The detector exploits a combined detection mechanism, in which avalanche quasiparticle multiplication and the supercurrent jointly produce a voltage response to a single absorbed photon via successive formation of a photon-induced and a current-induced normal hotspot in a narrow superconducting strip. The response time of the detector should increase with the photon energy providing energy resolution. Depending on the superconducting material and operation conditions, the cut-off wavelength for the single-photon detection regime varies from infrared waves to visible light. We simulated the performance of the background-limited infrared direct detector and X-ray photon counter utilizing the above mechanism. Low dark count rate and intrinsic low-frequency cut-off allow for realizing a background limited noise equivalent power of 10−20 W Hz−1/2 for a far-infrared direct detector exposed to 4-K background radiation. At low temperatures, the intrinsic response time of the counter is rather determined by diffusion of nonequilibrium electrons than by the rate of energy transfer to phonons. Therefore, thermal fluctuations do not hamper energy resolution of the X-ray photon counter that should be better than 10−3 for 6-keV photons. Comparison of new data obtained with a Nb based detector and previously reported results on NbN quantum detectors support our estimates of ultimate detector performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1286-0042 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 534
Permanent link to this record
 

 
Author Elezov, M.; Scherbatenko, M.; Sych, D.; Goltsman, G.; Arakelyan, S.; Evlyukhin, A.; Kalachev, A.; Naumov, A.
Title Towards the fiber-optic Kennedy quantum receiver Type Conference Article
Year 2019 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.
Volume 220 Issue Pages 03011 (1 to 2)
Keywords SSPD, SNSPD, Kennedy quantum receiver
Abstract We consider practical aspects of using standard fiber-optic elements and superconducting nanowire single-photon detectors for the development of a practical quantum receiver based on the Kennedy scheme. Our receiver allows to discriminate two phase-modulated coherent states of light at a wavelength of 1.5 microns in continuous mode with bit rate 200 Kbit/s and error rate about two times below the standard quantum limit.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1288
Permanent link to this record
 

 
Author Korneeva, Y.; Vodolazov, D.; Florya, I.; Manova, N.; Smirnov, E.; Korneev, A.; Mikhailov, M.; Goltsman, G.; Klapwijk, T. M.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R.
Title Single photon detection in micron scale NbN and α-MoSi superconducting strips Type Conference Article
Year 2018 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.
Volume 190 Issue Pages 04010 (1 to 2)
Keywords SSPD
Abstract We experimentally demonstrate the single photon detection in straight micrometer-wide NbN and α-MoSi bridges. Width of the bridges is 2 µm, while the wavelength of the photon changes from 408 to 1550 nm and critical current exceeds 50% of the depairing current. Obtained results offer the alternative route for design of detectors without resonator and meander structure and indirectly confirm vortex assisted mechanism of single photon detection.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1319
Permanent link to this record