|   | 
Details
   web
Records
Author Marksteiner, M.; Divochiy, A.; Sclafani, M.; Haslinger, P.; Ulbricht, H.; Korneev, A.; Semenov, A.; Gol'tsman, G.; Arndt, M.
Title A superconducting NbN detector for neutral nanoparticles Type Journal Article
Year 2009 Publication Nanotechnol. Abbreviated Journal Nanotechnol.
Volume 20 Issue 45 Pages 455501
Keywords SSPD; SNSPD; *Electric Conductivity; Microscopy, Electron, Scanning; Nanoparticles/*chemistry/ultrastructure; Nanotechnology/*methods; *Photons
Abstract We present a proof-of-principle study of superconducting single photon detectors (SSPD) for the detection of individual neutral molecules/nanoparticles at low energies. The new detector is applied to characterize a laser desorption source for biomolecules and allows retrieval of the arrival time distribution of a pulsed molecular beam containing the amino acid tryptophan, the polypeptide gramicidin as well as insulin, myoglobin and hemoglobin. We discuss the experimental evidence that the detector is actually sensitive to isolated neutral particles.
Address University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria. markus.arndt@univie.ac.at
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484 ISBN Medium
Area Expedition Conference
Notes PMID:19822928 Approved no
Call Number Serial 1239
Permanent link to this record
 

 
Author Parrott, Edward P. J.; Zeitler, J. Axel; Fris<cc><152>c<cc><152>ic<cc><81>, Tomislav; Pepper, Michael; Jones, William; Day, Graeme M.; Gladden, Lynn F.
Title Testing the sensitivity of terahertz spectroscopy to changes in molecular and supramolecular structure: a study of structurally similar cocrystals Type Journal Article
Year 2009 Publication Crystal Growth & Design Abbreviated Journal Crystal Growth & Design
Volume 9 Issue 3 Pages 1452-1460
Keywords supramolecular recognition, infrared, terahertz, IR, THz, TDS
Abstract Terahertz time-domain-spectroscopy (THz-TDS) has emerged as a versatile spectroscopic technique, and an alternative to powder X-ray diffraction in the characterization of molecular crystals. We tested the ability of terahertz spectroscopy to distinguish between chiral and racemic hydrogen-bonded cocrystals that are similar in molecular and supramolecular structure. Terahertz spectroscopy readily distinguished between the isostructural cocrystals of theophylline with chiral and racemic forms of malic acid which are almost identical in molecular structure and supramolecular architecture. Similarly, the cocrystals of theophylline with chiral and racemic forms of tartaric acid, which are similar at the molecular level but dissimilar in crystal packing, were distinguished unequivocally. The investigation of the same cocrystals using X-ray powder diffraction and Raman spectroscopy suggested that THz-TDS is comparable in sensitivity to diffraction methods and more sensitive than Raman spectroscopy to changes in cocrystal architecture. The differences in spectra acquired by THz-TDS could be further enhanced by cooling the samples to 109 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1528-7483 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 567
Permanent link to this record
 

 
Author Ozhegov, R. V.; Okunev, O. V.; Gol’tsman, G. N.; Filippenko, L. V.; Koshelets, V. P.
Title Noise equivalent temperature difference of a superconducting integrated terahertz receiver Type Journal Article
Year 2009 Publication J. Commun. Technol. Electron. Abbreviated Journal J. Commun. Technol. Electron.
Volume 54 Issue 6 Pages 716-720
Keywords SIS mixer SIR NETD, FFO, harmonic mixer
Abstract The dependence of the noise equivalent temperature difference (NETD) of a superconducting integrated receiver (SIR) on the receiver noise temperature and the inputsignal level has been investigated. An unprecedented NETD of 13±2 mK has been measured at a SIR noise temperature of 200 K, intermediate-frequency bandwidth of 4 GHz, and time constant of 1 s. With a decrease in the input signal, an improvement in the NETD is observed. This effect is explained by a reduction in the influence of the instabilities of the receiver power supply and the amplification circuit that occur when the input signal is decreased.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1064-2269 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1400
Permanent link to this record
 

 
Author Wild, W.; Kardashev, N. S.; Likhachev, S. F.; Babakin, N. G.; Arkhipov, V. Y.; Vinogradov, I. S.; Andreyanov, V. V.; Fedorchuk, S. D.; Myshonkova, N. V.; Alexsandrov, Y. A.; Novokov, I. D.; Goltsman, G. N.; Cherepaschuk, A. M.; Shustov, B. M.; Vystavkin, A. N.; Koshelets, V. P.; Vdovin, V.F.; de Graauw, T.; Helmich, F.; vd Tak, F.; Shipman, R.; Baryshev, A.; Gao, J. R.; Khosropanah, P.; Roelfsema, P.; Barthel, P.; Spaans, M.; Mendez, M.; Klapwijk, T.; Israel, F.; Hogerheijde, M.; vd Werf, P.; Cernicharo, J.; Martin-Pintado, J.; Planesas, P.; Gallego, J. D.; Beaudin, G.; Krieg, J. M.; Gerin, M.; Pagani, L.; Saraceno, P.; Di Giorgio, A. M.; Cerulli, R.; Orfei, R.; Spinoglio, L.; Piazzo, L.; Liseau, R.; Belitsky, V.; Cherednichenko, S.; Poglitsch, A.; Raab, W.; Guesten, R.; Klein, B.; Stutzki, J.; Honingh, N.; Benz, A.; Murphy, A.; Trappe, N.; Räisänen, A.
Title Millimetron—a large Russian-European submillimeter space observatory Type Journal Article
Year 2009 Publication Exp. Astron. Abbreviated Journal Exp. Astron.
Volume 23 Issue 1 Pages 221-244
Keywords Millimetron space observatory, VLBI, very long baseline interferometry
Abstract Millimetron is a Russian-led 12 m diameter submillimeter and far-infrared space observatory which is included in the Space Plan of the Russian Federation for launch around 2017. With its large collecting area and state-of-the-art receivers, it will enable unique science and allow at least one order of magnitude improvement with respect to the Herschel Space Observatory. Millimetron will be operated in two basic observing modes: as a single-dish observatory, and as an element of a ground-space very long baseline interferometry (VLBI) system. As single-dish, angular resolutions on the order of 3 to 12 arc sec will be achieved and spectral resolutions of up to a million employing heterodyne techniques. As VLBI antenna, the chosen elliptical orbit will provide extremely large VLBI baselines (beyond 300,000 km) resulting in micro-arc second angular resolution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0922-6435 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1402
Permanent link to this record
 

 
Author Meledin, Denis; Pavolotsky, Alexey; Desmaris, Vincent.; Lapkin, Igor; Risacher, Christophe; Perez, Victor; Henke, Douglas; Nystrom, Olle; Sundin, Erik; Dochev, Dimitar; Pantaleev, Miroslav; Fredrixon, Mathias; Strandberg, Magnus; Voronov, Boris; Goltsman, Gregory; Belitsky, Victor
Title A 1.3-THz balanced waveguide HEB mixer for the APEX telescope Type Journal Article
Year 2009 Publication IEEE Trans. Microw. Theory Techn. Abbreviated Journal
Volume 57 Issue 1 Pages 89-98
Keywords HEB, mixer, waveguide, balanced, NbN
Abstract In this paper, we report about the development, fabrication, and characterization of a balanced waveguide hot electron bolometer (HEB) receiver for the Atacama Pathfinder EXperiment telescope covering the frequency band of 1.25–1.39 THz. The receiver uses a quadrature balanced scheme and two HEB mixers, fabricated from 4- to 5-nm-thick NbN film deposited on crystalline quartz substrate with an MgO buffer layer in between. We employed a novel micromachining method to produce all-metal waveguide parts at submicrometer accuracy (the main-mode waveguide dimensions are 90×180 μm). We present details on the mixer design and measurement results, including receiver noise performance, stability and “first-light” at the telescope site. The receiver yields a double-sideband noise temperature averaged over the RF band below 1200 K, and outstanding stability with a spectroscopic Allan time more than 200 s.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9480 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ lobanovyury @ Serial 554
Permanent link to this record