|   | 
Details
   web
Records
Author Bespalov, A.V.; Gol'tsman, G.N.; Semenov, A.D.; Renk, K.F.
Title Determination of the far-infrared emission characteristic of a cyclotron p-germanium laser by use of a superconducting Nb detector Type Journal Article
Year 1991 Publication Solid State Communications Abbreviated Journal Solid State Communications
Volume 80 Issue 7 Pages 503-506
Keywords Nb detector, applications
Abstract We studied the far-infrared emission characteristics of a cyclotron p-germanium laser using a broad-band superconducting Nb film detector. For magnetic fields between ∼25 kOe and ∼50 kOe, emission in a frequency range from ∼50 cm-1 to ∼100 cm-1 with maximum intensity around 90 cm-1 was obtained. We determined, for fixed magnetic fields, electric field dependences of the emission intensity taking into account that the total electric field is a sum of the applied and the Hall electric field. An analysis of the emission intensity characteristic gives evidence that transitions between the two lowest Landau levels of light holes are responsible for the laser action.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1098 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1677
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol'tsman, G. N.; Semenov, A. D.; Sergeev, A. V.
Title Mechanism of picosecond response of granular YBaCuO films to electromagnetic radiation Type Journal Article
Year 1990 Publication Solid State Communications Abbreviated Journal Solid State Communications
Volume 76 Issue 4 Pages 493-497
Keywords YBCO HTS detectors
Abstract The ultrafast mechanisms of radiation detection in granular YBaCuO films are studied in the wide wavelength range from millimeter to near infrared. With the rise of radiation frequency the Josephson detection at the grain boundary weak links is replaced by electron heating into the grains. This change occurs in the submillimeter wavelength range. Electron-phonon relaxation time τeph is determined by direct measurements and analyses quasistationary electron heating. Temperature dependence of τeph at T ≤ 40 K was found to be τeph ∼ T−1. The results show that detectors with the response time of few picoseconds at nitrogen temperature are attainable.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1098 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1685
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol'tsman, G. N.; Potapov, V. D.; Sergeev, A. V.
Title Restriction of microwave enhancement of superconductivity in impure superconductors due to electron-electron interaction Type Journal Article
Year 1990 Publication Solid State Communications Abbreviated Journal Solid State Communications
Volume 75 Issue 8 Pages 639-641
Keywords impure superconductors
Abstract Transition from microwave enhancement of supercurrent to superconductivity suppression is investigated in impure superconductors. It is demonstrated that the frequency range of the enhancement effect narrows with the decrease of the electron mean free path, l, and at l ⩽ 1 nm electron heating is observed in the whole frequency range. Dependences of frequency boundaries on l are explained by taking into account strong electron-electron interaction in impure metals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1098 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1687
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gershenzon, M. E.; Gol'tsman, G. N.; Semyonov, A. D.; Sergeev, A. V.
Title Heating of electrons in superconductor in the resistive state due to electromagnetic radiation Type Journal Article
Year 1984 Publication Solid State Communications Abbreviated Journal Solid State Communications
Volume 50 Issue 3 Pages 207-212
Keywords Nb HEB
Abstract The effect of heating electrons with respect to phonons in a thin superconducting film driven into the resistive state by the current and the external magnetic field has been observed and investigated. This effect caused by the electromagnetic radiation is manifested in the increased resistance of the film and is not selective over the frequency range from 1010 to 1015 Hz. That the effect is frequency independent under the conditions of strong electron scattering caused by static defects is explained by the decisive role of electron -electron collisions in forming the distribution function. The characteristic time of resistance change, obtained experimentally, corresponds to the relaxation time of the order parameter near the superconducting transition and to the relaxation time of the nonelastic electron-phonon interaction at lower temperatures and in lower magnetic fields.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1098 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1709
Permanent link to this record
 

 
Author Ozhegov, R. V.; Gorshkov, K. N.; Vachtomin, Y. B.; Smirnov, K. V.; Finkel, M. I.; Goltsman, G. N.; Kiselev, O. S.; Kinev, N. V.; Filippenko, L. V.; Koshelets, V. P.
Title Terahertz imaging system based on superconducting heterodyne integrated receiver Type Conference Article
Year 2014 Publication Proc. THz and Security Applications Abbreviated Journal Proc. THz and Security Applications
Volume Issue Pages 113-125
Keywords SIS mixer, SIR, THz imaging
Abstract The development of terahertz imaging instruments for security systems is on the cutting edge of terahertz technology. We are developing a THz imaging system based on a superconducting integrated receiver (SIR). An SIR is a new type of heterodyne receiver based on an SIS mixer integrated with a flux-flow oscillator (FFO) and a harmonic mixer which is used for phase-locking the FFO. Employing an SIR in an imaging system means building an entirely new instrument with many advantages compared to traditional systems.

In this project we propose a prototype THz imaging system using an 1 pixel SIR and 2D scanner. At a local oscillator frequency of 500 GHz the best noise equivalent temperature difference (NETD) of the SIR is 10 mK at an integration time of 1 s and a detection bandwidth of 4 GHz. The scanner consists of two rotating flat mirrors placed in front of the antenna consisting of a spherical primary reflector and an aspherical secondary reflector. The diameter of the primary reflector is 0.3 m. The operating frequency of the imaging system is 600 GHz, the frame rate is 0.1 FPS, the scanning area is 0.5 × 0.5 m2, the image resolution is 50 × 50 pixels, the distance from an object to the scanner was 3 m. We have obtained THz images with a spatial resolution of 8 mm and a NETD of less than 2 K.
Address
Corporate Author Thesis
Publisher Springer Netherlands Place of Publication Dordrecht Editor Corsi, C.; Sizov, F.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-94-017-8828-1 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1368
Permanent link to this record