|   | 
Details
   web
Records
Author Baselmans, J. J. A.; Baryshev, A.; Reker, S. F.; Hajenius, M.; Gao, J. R.; Klapwijk, T. M.; Vahtomin, Yu.; Maslennikov, S.; Antipov, S.; Voronov, B.; Gol'tsman, G.
Title Direct detection effect in small volume hot electron bolometer mixers Type Journal Article
Year 2005 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 86 Issue 16 Pages 163503 (1 to 3)
Keywords HEB, mixer, direct detection effect
Abstract We measure the direct detection effect in a small volume (0.15μm×1μm×3.5nm)(0.15μm×1μm×3.5nm) quasioptical NbN phonon cooled hot electronbolometermixer at 1.6THz1.6THz. We find that the small signal sensitivity of the receiver is underestimated by 35% due to the direct detection effect and that the optimal operating point is shifted to higher bias voltages when using calibration loads of 300K300K and 77K77K. Using a 200GHz200GHzbandpass filter at 4.2K4.2K the direct detection effect virtually disappears. This has important implications for the calibration procedure of these receivers in real telescope systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 377
Permanent link to this record
 

 
Author Baselmans, J. J. A.; Hajenius, M.; Gao, J. R.; Klapwijk, T. M.; de Korte, P. A. J.; Voronov, B.; Gol'tsman, G.
Title Doubling of sensitivity and bandwidth in phonon cooled hot electron bolometer mixers Type Journal Article
Year 2004 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 84 Issue 11 Pages 1958-1960
Keywords NbN HEB mixers
Abstract We demonstrate that the performance of NbN lattice cooled hot electron bolometer mixers depends strongly on the interface quality between the bolometer and the contact structure. We show experimentally that both the receiver noise temperature and the gain bandwidth can be improved by more than a factor of 2 by cleaning the interface and adding an additional superconducting interlayer to the contact pad. Using this we obtain a double sideband receiver noise temperature TN,DSB=950 K

at 2.5 THz and 4.3 K, uncorrected for losses in the optics. At the same bias point, we obtain an IF gain bandwidth of 6 GHz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 352
Permanent link to this record
 

 
Author Verevkin, A.; Zhang, J.; Sobolewski, Roman; Lipatov, A.; Okunev, O.; Chulkova, G.; Korneev, A.; Smirnov, K.; Gol'tsman, G. N.; Semenov, A.
Title Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range Type Journal Article
Year 2002 Publication Appl. Phys. Lett. Abbreviated Journal
Volume 80 Issue 25 Pages 4687-4689
Keywords NbN SSPD, SNSPD, QE
Abstract We report our studies on spectral sensitivity of meander-type, superconducting NbN thin-film single-photon detectors (SPDs), characterized by GHz counting rates of visible and near-infrared photons and negligible dark counts. Our SPDs exhibit experimentally determined quantum efficiencies ranging from ∼0.2% at the 1.55 μm wavelength to ∼70% at 0.4 μm. Spectral dependences of the detection efficiency (DE) at the 0.4 to 3.0-μm-wavelength range are presented. The exponential character of the DE dependence on wavelength, as well as its dependence versus bias current, is qualitatively explained in terms of superconducting fluctuations in our ultrathin, submicron-width superconducting stripes. The DE values of large-active-area NbN SPDs in the visible range are high enough for modern quantum communications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 331
Permanent link to this record
 

 
Author Kovalyuk, V.; Ferrari, S.; Kahl, O.; Semenov, A.; Shcherbatenko, M.; Lobanov, Y.; Ozhegov, R.; Korneev, A.; Kaurova, N.; Voronov, B.; Pernice, W.; Gol'tsman, G.
Title On-chip coherent detection with quantum limited sensitivity Type Journal Article
Year 2017 Publication Sci Rep Abbreviated Journal Sci Rep
Volume 7 Issue 1 Pages 4812
Keywords waveguide, SSPD, SNSPD
Abstract While single photon detectors provide superior intensity sensitivity, spectral resolution is usually lost after the detection event. Yet for applications in low signal infrared spectroscopy recovering information about the photon's frequency contributions is essential. Here we use highly efficient waveguide integrated superconducting single-photon detectors for on-chip coherent detection. In a single nanophotonic device, we demonstrate both single-photon counting with up to 86% on-chip detection efficiency, as well as heterodyne coherent detection with spectral resolution f/f exceeding 10(11). By mixing a local oscillator with the single photon signal field, we observe frequency modulation at the intermediate frequency with ultra-low local oscillator power in the femto-Watt range. By optimizing the nanowire geometry and the working parameters of the detection scheme, we reach quantum-limited sensitivity. Our approach enables to realize matrix integrated heterodyne nanophotonic devices in the C-band wavelength range, for classical and quantum optics applications where single-photon counting as well as high spectral resolution are required simultaneously.
Address National Research University Higher School of Economics, Moscow, 101000, Russia. ggoltsman@hse.ru
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:28684752; PMCID:PMC5500578 Approved no
Call Number RPLAB @ kovalyuk @ Serial 1129
Permanent link to this record
 

 
Author Khasminskaya, S.; Pyatkov, F.; Słowik, K.; Ferrari, S.; Kahl, O.; Kovalyuk, V.; Rath, P.; Vetter, A.; Hennrich, F.; Kappes, M. M.; Gol'tsman, G.; Korneev, A.; Rockstuhl, C.; Krupke, R.; Pernice, W. H. P.
Title Fully integrated quantum photonic circuit with an electrically driven light source Type Journal Article
Year 2016 Publication Nat. Photon. Abbreviated Journal Nat. Photon.
Volume 10 Issue 11 Pages 727-732
Keywords Carbon nanotubes and fullerenes, Integrated optics, Single photons and quantum effects, Waveguide integrated single-photon detector
Abstract Photonic quantum technologies allow quantum phenomena to be exploited in applications such as quantum cryptography, quantum simulation and quantum computation. A key requirement for practical devices is the scalable integration of single-photon sources, detectors and linear optical elements on a common platform. Nanophotonic circuits enable the realization of complex linear optical systems, while non-classical light can be measured with waveguide-integrated detectors. However, reproducible single-photon sources with high brightness and compatibility with photonic devices remain elusive for fully integrated systems. Here, we report the observation of antibunching in the light emitted from an electrically driven carbon nanotube embedded within a photonic quantum circuit. Non-classical light generated on chip is recorded under cryogenic conditions with waveguide-integrated superconducting single-photon detectors, without requiring optical filtering. Because exclusively scalable fabrication and deposition methods are used, our results establish carbon nanotubes as promising nanoscale single-photon emitters for hybrid quantum photonic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ kovalyuk @ Serial 1105
Permanent link to this record