|   | 
Details
   web
Records
Author Meledin, D.; Tong, C.-Y. E.; Blundell, R.; Goltsman, G.
Title Measurement of intermediate frequency bandwidth of hot electron bolometer mixers at terahertz frequency range Type Journal Article
Year 2003 Publication IEEE Microw. Wireless Compon. Lett. Abbreviated Journal IEEE Microw. Wireless Compon. Lett.
Volume 13 Issue 11 Pages 493-495
Keywords waveguide NbN HEB mixers
Abstract We have developed a new experimental setup for measuring the IF bandwidth of superconducting hot electron bolometer mixers. In our measurement system we use a chopped hot filament as a broadband signal source, and can perform a high-speed IF scan with no loss of accuracy when compared to coherent methods. Using this technique we have measured the 3 dB IF bandwidth of hot electron bolometer mixers, designed for THz frequency operation, and made from 3-4 nm thick NbN film deposited on an MgO buffer layer over crystalline quartz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1531-1309 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1509
Permanent link to this record
 

 
Author Kawamura, J.; Blundell, R.; Tong, C.‐yu E.; Gol’tsman, G.; Gershenzon, E.; Voronov, B.
Title Performance of NbN lattice‐cooled hot‐electron bolometric mixers Type Journal Article
Year 1996 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 80 Issue 7 Pages 4232-4234
Keywords NbN HEB mixers
Abstract The heterodyne performance of lattice‐cooled hot‐electron bolometric mixers is measured at 200 GHz. Superconducting thin‐film niobium nitride strips with ∼5 nm thickness are used as waveguide mixer elements. A double‐sideband receiver noise temperature of 750 K at 244 GHz is measured at an intermediate frequency centered at 1.5 GHz with 500 MHz bandwidth and with 4.2 K device temperature. The instantaneous bandwidth for this mixer is 1.6 GHz. The local oscillator power required by the mixer is about 0.5 μW. The mixer is linear to within 1 dB up to an input power level 6 dB below the local oscillator power. A receiver incorporating a hot‐electron bolometric mixer was used to detect molecular line emission in a laboratory gascell. This experiment unambiguously confirms that the receiver noise temperature determined from Y‐factor measurements reflects the true heterodyne sensitivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1607
Permanent link to this record
 

 
Author Kawamura, J.; Blundell, R.; Tong, C.-yu E.; Gol’tsman, G.; Gershenzon, E.; Voronov, B.; Cherednichenko, S.
Title Low noise NbN lattice-cooled superconducting hot-electron bolometric mixers at submillimeter wavelengths Type Journal Article
Year 1997 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 70 Issue 12 Pages 1619-1621
Keywords NbN HEB mixers
Abstract Lattice-cooled superconducting hot-electron bolometric mixers are used in a submillimeter-wave waveguide heterodyne receiver. The mixer elements are niobium nitride film with 3.5 nm thickness and ∼10 μm2 area. The local oscillator power for optimal performance is estimated to be 0.5 μW, and the instantaneous bandwidth is 2.2 GHz. At an intermediate frequency centered at 1.4 GHz with 200 MHz bandwidth, the double sideband receiver noise temperature is 410 K at 430 GHz. The receiver has been used to detect molecular line emission in a laboratory gas cell.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1599
Permanent link to this record
 

 
Author Trifonov, A.; Tong, C.-Y. E.; Grimes, P.; Lobanov, Y.; Kaurova, N.; Blundell, R.; Goltsman, G.
Title Development of A Silicon Membrane-based Multi-pixel Hot Electron Bolometer Receiver Type Conference Article
Year 2017 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 27 Issue 4 Pages 6
Keywords Multi-pixel, HEB, silicon-on-insulator, horn array
Abstract We report on the development of a multi-pixel

Hot Electron Bolometer (HEB) receiver fabricated using

silicon membrane technology. The receiver comprises a

2 × 2 array of four HEB mixers, fabricated on a single

chip. The HEB mixer chip is based on a superconducting

NbN thin film deposited on top of the silicon-on-insulator

(SOI) substrate. The thicknesses of the device layer and

handling layer of the SOI substrate are 20 μm and 300 μm

respectively. The thickness of the device layer is chosen

such that it corresponds to a quarter-wave in silicon at

1.35 THz. The HEB mixer is integrated with a bow-tie

antenna structure, in turn designed for coupling to a

circular waveguide,
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ kovalyuk @ Serial 1111
Permanent link to this record
 

 
Author Lobanov, Y.; Tong, E.; Blundell, R.; Hedden, A.; Voronov, B.; Gol'tsman, G.
Title Large-signal frequency response of an HEB mixer: from 300 MHz to terahertz Type Journal Article
Year 2011 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal
Volume 21 Issue 3 Pages 628-631
Keywords waveguide NbN HEB mixers
Abstract We present a study of the large signal frequency response of an HEB mixer over a wide frequency range. In our experiments, we have subjected the HEB mixer to incident electromagnetic radiation from 0.3 GHz to 1 THz. The mixer element is an NbN film deposited on crystalline quartz. The mixer chip is mounted in a waveguide cavity, coupled to free space with a diagonal horn. At microwave frequencies, electromagnetic radiation is applied through the coaxial bias port of the mixer block. At higher frequencies the input signal passes via the diagonal horn feed. At each frequency, the incident power is varied and a family of I-V curves is recorded. From the curves we identify 3 distinct regimes of operation of the mixer separated by the phonon relaxation frequency and the superconducting energy gap frequency observed at about 3 GHz and 660 GHz respectively. In this paper, we will present observed curves and discuss the results of our experiment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 719
Permanent link to this record