|   | 
Details
   web
Records
Author Gershenzon, E. M.; Gol'tsman, G. N.; Zorin, M. A.; Karasik, B. S.; Trifonov, V. A.
Title Nonequilibrium and bolometric response of YBaCuO films in a resistive state to infrared low intensity radiation Type Conference Article
Year 1994 Publication Council on Low-temp. Phys. Abbreviated Journal Council on Low-temp. Phys.
Volume Issue Pages 82-83
Keywords YBCO HTS HEB
Abstract
Address Dubna
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Joint Inst. for Nuclear Research, Dubna (Russian Federation); 296 p; 1994; p. 82-83; 30. Conference on low-temperature physics; 30. Soveshchanie po fizike nizkikh temperatur; Dubna (Russian Federation); 6-8 Sep 1994
Notes Неравновесный и болометрический отклик YBaCuO пленок в резиотивном состоянии на инфракрасное лазерное излучение малой интенсивности Approved no
Call Number Serial 1632
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol'tsman, G. N.; Gogidze, I. G.; Gusev, Yu. P.; Elantiev, A. I.; Karasik, B. S.; Semenov, A. D.
Title Millimeter and submillimeter wave range mixer based on electronic heating of superconducting films in the resistive state Type Journal Article
Year 1990 Publication Sov. Supercond. Abbreviated Journal Sov. Supercond.
Volume 3 Issue 10 Pages 1582-1597
Keywords HEB mixers
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 240
Permanent link to this record
 

 
Author Voronov, B. M.; Gershenzon, E. M.; Gol'tsman, G. N.; Gogidze, I. G.; Gusev, Yu. P.; Zorin, M. A.; Sejdman, L. A.; Semenov, A. D.
Title Picosecond range detector base on superconducting niobium nitride film sensitive to radiation in spectral range from millimeter waves up to visible light Type Journal Article
Year 1992 Publication Sverkhprovodimost': Fizika, Khimiya, Tekhnika Abbreviated Journal Sverkhprovodimost': Fizika, Khimiya, Tekhnika
Volume 5 Issue 5 Pages 955-960
Keywords NbN HEB detectors
Abstract Fast-operating picosecond detector of electromagnetical radiation is developed on the basis of fine superconducting film of niobium nitride with high sensitivity within spectral range from millimetric waves up to visible light. Detector sensitive element represents structure covering narrow parallel strips with micron sizes included in the rupture of microstrip line. Detecting ability of the detector and time constant measured using amplitude-simulated radiation of reverse wave tubes and pulse radiation of picosecond gas and solid-body lasers, constitute D*≅1010 W-1·cm·Hz-1/2 and τ≤5 ps respectively, at 10 K temperature. The expected value of time constant of the detector at 10 K obtained via extrapolation of directly measured dependence that is, τ ∝ τ-1, constitutes 20 ps. Experimental data demonstrate that detection mechanism is linked with electron heating effect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0131-5366 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1670
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol'tsman, G. N.; Karasik, B. S.; Lugovaya, G. Ya.; Serebryakova, N. A.; Chinkova, E. V.
Title Infrared radiation detectors on the base of electron heating in resistive state films from traditional superconducing materials Type Journal Article
Year 1992 Publication Sverkhprovodimost': Fizika, Khimiya, Tekhnika Abbreviated Journal Sverkhprovodimost': Fizika, Khimiya, Tekhnika
Volume 5 Issue 6 Pages 1129-1140
Keywords IR HEB detectors
Abstract Characteristics of infrared radiation detectors based on electron heating in thin superconducting films transformed at T ≤ Tc to a resistive state by transport current and, if necessary, by magnetic field are investigated. A comparison is made of the characteristics of the detectors fabricated of different materials: aluminium, niobium, Mo0.5Re0.5. Some devices with different topology of the reception area are considered. Electron heating detectors are comparable by their sensitivity with superconducting bolometers, but differ in a high fast-response.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0131-5366 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1673
Permanent link to this record
 

 
Author Zhang, Wen; Li, Ning; Jiang, Ling; Miao, Wei; Lin, Zhen-Hui; Yao, Qi-Jun; Shi, Sheng-Cai; Chen, Jian; Wu, Pei-Heng; Svechnikov, S. I.; Vachtomin, Y. B.; Antipov, S. V.; Voronov, B. M.; Gol'tsman, G. N.
Title Noise behaviour of a THz superconducting hot-electron bolometer mixer Type Journal Article
Year 2007 Publication Chinese Phys. Lett. Abbreviated Journal Chinese Phys. Lett.
Volume 24 Issue 6 Pages 1778-1781
Keywords NbN HEB mixers
Abstract A quasi-optical superconducting NbN hot-electron bolometer (HEB) mixer is measured in the frequency range of 0.5–2.5 THz for understanding of the frequency dependence of noise temperature of THz coherent detectors. It has been found that noise temperature increasing with frequency is mainly due to the coupling loss between the quasi-optical planar antenna and the superconducting HEB bridge when taking account of non-uniform distribution of high-frequency current. With the coupling loss corrected, the superconducting HEB mixer demonstrates a noise temperature nearly independent of frequency.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0256-307X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1430
Permanent link to this record
 

 
Author Rönnung, F.; Cherednichenko, S.; Winkler, D.; Gol'tsman, G. N.
Title A nanoscale YBCO mixer optically coupled with a bow tie antenna Type Journal Article
Year 1999 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 12 Issue 11 Pages 853-855
Keywords YBCO HTS HEB mixers
Abstract The bolometric response of YBa2Cu3O7-δ(YBCO) hot-electron bolometers (HEBs) to near-infrared radiation was studied. Devices were fabricated from a 50 nm thick film and had in-plane areas of 10 × 10 µm2, 2 × 0.2 µm2, 1 × 0.2µm2 and 0.5 × 0.2 µm2. We found that nonequilibrium phonons cool down more effectively for the bolometers with smaller area. For the smallest bolometer the bolometric component in the response is 10 dB less than for the largest one.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1563
Permanent link to this record
 

 
Author Yagoubov, Pavel; Kroug, Matthias; Merkel, Harald; Kollberg, Erik; Schubert, Josef; Hübers, Heinz-Wilhelm
Title NbN hot electron bolometric mixers at frequencies between 0.7 and 3.1 THz Type Journal Article
Year 1999 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 12 Issue 11 Pages 989-991
Keywords NbN HEB mixers
Abstract The performance of NbN-based phonon-cooled hot electron bolometric (HEB) quasioptical mixers is investigated in the 0.7-3.1 THz frequency range. The devices are made from a 3.5-4 nm thick NbN film on high resistivity Si and integrated with a planar spiral antenna on the same substrate. The length of the bolometer microbridge is 0.1-0.2 µm; the width is 1-2 µm. The best results of the DSB receiver noise temperature measured at 1.5 GHz intermediate frequency are: 800 K at 0.7 THz, 1100 K at 1.6 THz, 2000 K at 2.5 THz and 4200 K at 3.1 THz. The measurements were performed with a far infrared laser as the local oscillator (LO) source. The estimated LO power requirement is less than 500 nW at the receiver input. First results on spiral antenna polarization measurements are reported.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 295
Permanent link to this record
 

 
Author Yang, Z. Q.; Hajenius, M.; Baselmans, J. J. A.; Gao, J. R.; Voronov, B.; Gol’tsman, G. N.
Title Reduced noise in NbN hot-electron bolometer mixers by annealing Type Journal Article
Year 2006 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 19 Issue 4 Pages L (9 to 12)
Keywords NbN HEB mixers
Abstract We find that the sensitivity of heterodyne receivers based on superconducting hot-electron bolometers (HEBs) increases by 25–30% after annealing at 85 °C in vacuum. The devices studied are twin-slot antenna coupled mixers with a small NbN bridge of 1 × 0.15 µm2. We show that annealing changes the device properties as reflected in sharper resistive transitions of the complete device, apparently reducing the device-related noise. The lowest receiver noise temperature of 700 K is measured at a local oscillator frequency of 1.63 THz and a bath temperature of 4.3 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1456
Permanent link to this record
 

 
Author Zhang, W.; Miao, W.; Zhong, J. Q.; Shi, S. C.; Hayton, D. J.; Vercruyssen, N.; Gao, J. R.; Goltsman, G. N.
Title Temperature dependence of the receiver noise temperature and IF bandwidth of superconducting hot electron bolometer mixers Type Journal Article
Year 2014 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 27 Issue 8 Pages 085013 (1 to 5)
Keywords NbN HEB mixers
Abstract In this paper we study the temperature dependence of the receiver noise temperature and IF noise bandwidth of superconducting hot electron bolometer (HEB) mixers. Three superconducting NbN HEB devices of different transition temperatures (Tc) are measured at 0.85 THz and 1.4 THz at different bath temperatures (Tbath) between 4 K and 9 K. Measurement results demonstrate that the receiver noise temperature of superconducting NbN HEB devices is nearly constant for Tbath/Tc, less than 0.8, which is consistent with the simulation based on a distributed hot-spot model. In addition, the IF noise bandwidth appears independent of Tbath/Tc, indicating the dominance of phonon cooling in the investigated HEB devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1358
Permanent link to this record
 

 
Author Shurakov, A.; Lobanov, Y.; Goltsman, G.
Title Superconducting hot-electron bolometer: from the discovery of hot-electron phenomena to practical applications Type Journal Article
Year 2015 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 29 Issue 2 Pages 023001
Keywords HEB
Abstract The discovery of hot-electron phenomena in a thin superconducting film in the last century was followed by numerous experimental studies of its appearance in different materials aiming for a better understanding of the phenomena and consequent implementation of terahertz detection systems for practical applications. In contrast to the competitors such as superconductor-insulator-superconductor tunnel junctions and Schottky diodes, the hot electron bolometer (HEB) did not demonstrate any frequency limitation of the detection mechanism. The latter, in conjunction with a decent performance, rapidly made the HEB mixer the most attractive candidate for heterodyne observations at frequencies above 1 THz. The successful operation of practical instruments (the Heinrich Hertz Telescope, the Receiver Lab Telescope, APEX, SOFIA, Hershel) ensures the importance of the HEB technology despite the lack of rigorous theoretical routine for predicting the performance. In this review, we provide a summary of experimental and theoretical studies devoted to understanding the HEB physics, and an overview of various fabrication routes and materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1156
Permanent link to this record