|   | 
Details
   web
Records
Author Danerud, M.; Winkler, D.; Lindgren, M.; Zorin, M.; Trifonov, V.; Karasik, B. S.; Gol’tsman, G. N.; Gershenzon, E. M.
Title Nonequilibrium and bolometric photoresponse in patterned YBa2Cu3O7−δ thin films Type Journal Article
Year 1994 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 76 Issue 3 Pages 1902-1909
Keywords YBCO HTS HEB detector, nonequilibrium response
Abstract Epitaxial laser deposited YBa2Cu3O7−δ films of ∼50 nm thickness were patterned into detectors consisting of ten parallel 1 μm wide strips in order to study nonequilibrium and bolometric effects. Typically, the patterned samples had critical temperatures around 86 K, transition widths around 2 K and critical current densities above 1×106A/cm2 at 77 K. Pulsed laser measurements at 0.8 μm wavelength (17 ps full width at half maximum) showed a ∼30 ps response, attributed to electron heating, followed by a slower bolometric decay. Amplitude modulation in the band fmod=100 kHz–10 GHz of a laser with wavelength λ=0.8 μm showed two different thermal relaxations in the photoresponse. Phonon escape from the film (∼3 ns) is the limiting process, followed by heat diffusion in the substrate. Similar relaxations were also seen for λ=10.6 μm. The photoresponse measurements were made with the film in the resistive state and extended into the normal state. These states were created by supercritical bias currents. Measurements between 75 and 95 K (i.e., from below to above Tc) showed that the photoresponse was proportional to dR/dT for fmod=1 MHz and 4 GHz. The fast response is limited by the electron‐phonon scattering time, estimated to 1.8 ps from experimental data. The responsivity both at 0.8 and 10.6 μm wavelength was ∼1.2 V/W at fmod=1 GHz and the noise equivalent power was calculated to 1.5×10−9 WHz−1/2 for the fast response.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1637
Permanent link to this record
 

 
Author Kooi, J. W.; Baselmans, J. J. A.; Baryshev, A.; Schieder, R.; Hajenius, M.; Gao, J.R.; Klapwijk, T. M.; Voronov, B.; Gol’tsman, G.
Title Stability of heterodyne terahertz receivers Type Journal Article
Year 2006 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 100 Issue 6 Pages 064904 (1 to 9)
Keywords NbN HEB mixers
Abstract In this paper we discuss the stability of heterodyne terahertz receivers based on small volume NbN phonon cooled hot electron bolometers (HEBs). The stability of these receivers can be broken down in two parts: the intrinsic stability of the HEB mixer and the stability of the local oscillator (LO) signal injection scheme. Measurements show that the HEB mixer stability is limited by gain fluctuations with a 1∕f spectral distribution. In a 60MHz noise bandwidth this results in an Allan variance stability time of ∼0.3s. Measurement of the spectroscopic Allan variance between two intermediate frequency (IF) channels results in a much longer Allan variance stability time, i.e., 3s between a 2.5 and a 4.7GHz channel, and even longer for more closely spaced channels. This implies that the HEB mixer 1∕f noise is strongly correlated across the IF band and that the correlation gets stronger the closer the IF channels are spaced. In the second part of the paper we discuss atmospheric and mechanical system stability requirements on the LO-mixer cavity path length. We calculate the mixer output noise fluctuations as a result of small perturbations of the LO-mixer standing wave, and find very stringent mechanical and atmospheric tolerance requirements for receivers operating at terahertz frequencies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1444
Permanent link to this record
 

 
Author Baselmans, J. J. A.; Baryshev, A.; Reker, S. F.; Hajenius, M.; Gao, J. R.; Klapwijk, T. M.; Voronov, B.; Gol’tsman, G.
Title Influence of the direct response on the heterodyne sensitivity of hot electron bolometer mixers Type Journal Article
Year 2006 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 100 Issue 8 Pages 084510 (1 to 7)
Keywords NbN HEB mixers
Abstract We present a detailed experimental study of the direct detection effect in a small volume (0.15μm×1μm×3.5nm) quasioptical NbN phonon cooled hot electron bolometer mixer at 673GHz. We find that the small signal noise temperature, relevant for an astronomical observation, is 20% lower than the noise temperature obtained using 300 and 77K calibration loads. In a separate set of experiments we show that the direct detection effect is caused by a combination of bias current reduction when switching from the 77 to the 300K

load in combination with the bias current dependence of the receiver gain. The bias current dependence of the receiver gain is shown to be mainly caused by the current dependence of the mixer gain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1442
Permanent link to this record
 

 
Author Hübers, H.-W.; Semenov, A.; Holldack, K.; Schade, U.; Wüstefeld, G.; Gol’tsman, G.
Title Time domain analysis of coherent terahertz synchrotron radiation Type Journal Article
Year 2005 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 87 Issue 18 Pages 184103 (1 to 3)
Keywords NbN HEB mixers, applications
Abstract The time structure of coherent terahertz synchrotron radiation at the electron storage ring of the Berliner Elektronensynchrotron und Speicherring Gesellschaft has been analyzed with a fast superconducting hot-electron bolometer. The emission from a single bunch of electrons was found to last ∼1500ps at frequencies around 0.4THz, which is much longer than the length of an electron bunch in the time domain (∼5ps). It is suggested that this is caused by multiple reflections at the walls of the beam line. The quadratic increase of the power with the number of electrons in the bunch as predicted for coherent synchrotron radiation and the transition from stable to bursting radiation were determined from a single storage ring fill pattern of bunches with different populations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1457
Permanent link to this record
 

 
Author Semenov, A. D.; Hübers, H.-W.; Schubert, J.; Gol'tsman, G. N.; Elantiev, A. I.; Voronov, B. M.; Gershenzon, E. M.
Title Design and performance of the lattice-cooled hot-electron terahertz mixer Type Journal Article
Year 2000 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 88 Issue 11 Pages 6758-6767
Keywords HEB mixer, charge imbalance, HF current distribution
Abstract We present the measurements and the theoreticalmodel of the frequency-dependent noise temperature of a superconductor lattice-cooled hot-electron bolometer mixer in the terahertz frequency range. The increase of the noise temperature with frequency is a cumulative effect of the nonuniform distribution of the high-frequency current in the bolometer and the charge imbalance, which occurs at the edges of the normal domain and at the contacts with normal metal. We show that under optimal operation the fluctuation sensitivity of the mixer is determined by thermodynamic fluctuations of the noise power, whereas at small biases there appears additional noise, which is probably due to the flux flow. We propose the prescription of how to minimize the influence of the current distribution on the mixer performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 306
Permanent link to this record