toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Baubert, J.; Salez, M.; Merkel, H.; Pons, P.; Cherednichenko, S.; Lecomte, B.; Drakinsky, V.; Goltsman, G.; Leone, B. url  doi
openurl 
  Title IF gain bandwidth of membrane-based NbN hot electron bolometers for SHAHIRA Type Journal Article
  Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 15 Issue 2 Pages 507-510  
  Keywords NbN HEB mixers, applications  
  Abstract SHAHIRA (Submm Heterodyne Array for HIgh-speed Radio Astronomy) is a project supported by the European Space Agency (ESA) and is designed to fly on the SOFIA observatory. A quasi-optic design has been chosen for 2.5/2.7 THz and 4.7 THz, for hydroxyde radical OH, deuterated hydrogen HD and neutral atomic oxygen OI lines observations. Hot electron bolometers (HEBs) have been processed on 1 /spl mu/m thick SiO/sub 2//Si/sub 3/N/sub 4/ stress-less membranes. In this paper we analyse the intermediate frequency (IF) gain bandwidth from the theoretical point of view, and compare it to measurements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-2515 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1468  
Permanent link to this record
 

 
Author Jiang, L.; Li, J.; Zhang, W.; Yao, Q. J.; Lin, Z. L.; Shi, S. C.; Vachtomin, Y. B.; Antipov, S. V.; Svechnikov, S. I.; Voronov, B. M.; Goltsman, G. N. url  doi
openurl 
  Title Characterization of NbN HEB mixers cooled by a close-cycled 4 Kelvin refrigerator Type Journal Article
  Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 15 Issue 2 Pages 511-513  
  Keywords NbN HEB mixers  
  Abstract It is quite beneficial to operate superconducting hot-electron-bolometer (HEB) mixers with a close-cycled 4 Kelvin refrigerator for real applications such as astronomy and atmospheric research. In this paper, a phononcooled NbN HEB mixer (quasioptical type) is thoroughly characterized under such a cooling circumstance. The effects of mechanical vibration, electrical interference, and temperature fluctuation of a two-stage Gifford-McMahon 4 Kelvin refrigerator upon the characteristics of the phononcooled NbN HEB mixer are investigated in particular. Detailed measurement results are presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-2515 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1469  
Permanent link to this record
 

 
Author Korneev, A.; Matvienko, V.; Minaeva, O.; Milostnaya, I.; Rubtsova, I.; Chulkova, G.; Smirnov, K.; Voronov, V.; Gol’tsman, G.; Slysz, W.; Pearlman, A.; Verevkin, A.; Sobolewski, R. url  doi
openurl 
  Title Quantum efficiency and noise equivalent power of nanostructured, NbN, single-photon detectors in the wavelength range from visible to infrared Type Journal Article
  Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 15 Issue 2 Pages 571-574  
  Keywords NbN SSPD, SNSPD, QE, NEP  
  Abstract We present our studies on the quantum efficiency (QE) and the noise equivalent power (NEP) of the latest-generation, nanostructured, superconducting, single-photon detectors (SSPDs) in the wavelength range from 0.5 to 5.6 /spl mu/m, operated at temperatures in the 2.0- to 4.2-K range. Our detectors are designed as 4-nm-thick and 100-nm-wide NbN meander-shaped stripes, patterned by electron-beam lithography and cover a 10/spl times/10-/spl mu/m/sup 2/ active area. The best-achieved QE at 2.0 K for 1.55-/spl mu/m photons is 17%, and QE for 1.3-/spl mu/m infrared photons reaches its saturation value of /spl sim/30%. The SSPD NEP at 2.0 K is as low as 5/spl times/10/sup -21/ W/Hz/sup -1/2/. Our nanostructured SSPDs, operated at 2.0 K, significantly outperform their semiconducting counterparts, and, together with their GHz counting rate and picosecond timing jitter, they are devices-of-choice for practical quantum key distribution systems and free-space (even interplanetary) quantum optical communications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-2515 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1467  
Permanent link to this record
 

 
Author Pearlman, A.; Cross, A.; Slysz, W.; Zhang, J.; Verevkin, A.; Currie, M.; Korneev, A.; Kouminov, P.; Smirnov, K.; Voronov, B.; Gol’tsman, G.; Sobolewski, R. url  doi
openurl 
  Title Gigahertz counting rates of NbN single-photon detectors for quantum communications Type Journal Article
  Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 15 Issue 2 Pages 579-582  
  Keywords NbN SSPD, SNSPD  
  Abstract We report on the GHz counting rate and jitter of our nanostructured superconducting single-photon detectors (SSPDs). The devices were patterned in 4-nm-thick and about 100-nm-wide NbN meander stripes and covered a 10-/spl mu/m/spl times/10-/spl mu/m area. We were able to count single photons at both the visible and infrared telecommunication wavelengths at rates of over 2 GHz with a timing jitter of below 18 ps. We also present the model for the origin of the SSPD switching dynamics and jitter, based on the time-delay effect in the phase-slip-center formation mechanism during the detector photoresponse process. With further improvements in our readout electronics, we expect that our SSPDs will reach counting rates of up to 10 GHz. An integrated quantum communications receiver based on two fiber-coupled SSPDs and operating at 1550-nm wavelength is also presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-2515 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1465  
Permanent link to this record
 

 
Author Yang, J. K. W.; Dauler, E.; Ferri, A.; Pearlman, A.; Verevkin, A.; Gol’tsman, G.; Voronov, B.; Sobolewski, R.; Keicher, W. E.; Berggren, K. K. url  doi
openurl 
  Title Fabrication development for nanowire GHz-counting-rate single-photon detectors Type Journal Article
  Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 15 Issue 2 Pages 626-630  
  Keywords NbN SSPD, SNSPD  
  Abstract We have developed a fabrication process for GHz-counting-rate, single-photon, high-detection-efficiency, NbN, nanowire detectors. We have demonstrated two processes for the device patterning, one based on the standard polymethylmethacrylate (PMMA) organic positive-tone electron-beam resist, and the other based on the newer hydrogen silsesquioxane (HSQ) negative-tone spin-on-glass resist. The HSQ-based process is simple and robust, providing high resolution and the prospect of high fill-factors. Initial testing results show superconductivity in the films, and suggest that the devices exhibit photosensitivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-2515 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1466  
Permanent link to this record
 

 
Author Tong, C.-Y. E.; Trifonov, A.; Shurakov, A.; Blundell, R.; Gol’tsman, G. url  doi
openurl 
  Title A microwave-operated hot-electron-bolometric power detector for terahertz radiation Type Journal Article
  Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 25 Issue 3 Pages 2300604 (1 to 4)  
  Keywords NbN HEB mixer  
  Abstract A new class of microwave-operated THz power detectors based on the NbN hot-electron-bolometer (HEB) mixer is proposed. The injected microwave signal ( 1 GHz) serves the dual purpose of pumping the HEB element and enabling the read-out of the internal state of the device. A cryogenic amplifier amplifies the reflected microwave signal from the device and a homodyne scheme recovers the effects of the incident THz radiation. Two modes of operation have been identified, depending on the level of incident radiation. For weak signals, we use a chopper to chop the incident radiation against a black body reference and a lock-in amplifier to perform synchronous detection of the homodyne readout. The voltage measured is proportional to the incident power, and we estimate an optical noise equivalent power of  5pW/ √Hz at 0.83 THz. At higher signal levels, the homodyne circuit recovers the stream of steady relaxation oscillation pulses from the HEB device. The frequency of these pulses is in the MHz frequency range and bears a linear relationship with the incident THz radiation over an input power range of  15 dB. A digital frequency counter is used to measure THz power. The applicable power range is between 1 nW and 1 μW.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-2515 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1354  
Permanent link to this record
 

 
Author Trifonov, A.; Tong, C.-Y. E.; Lobanov, Y.; Kaurova, N.; Blundell, R.; Goltsman, G. url  doi
openurl 
  Title Photon absorption near the gap frequency in a hot electron bolometer Type Journal Article
  Year 2017 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 27 Issue 4 Pages 1-4  
  Keywords NBN HEB mixer  
  Abstract The superconducting energy gap is a fundamental characteristic of a superconducting film, which, together with the applied pump power and the biasing setup, defines the instantaneous resistive state of the Hot Electron Bolometer (HEB) mixer at any given bias point on the I-V curve. In this paper we report on a series of experiments, in which we subjected the HEB to radiation over a wide frequency range along with parallel microwave injection. We have observed three distinct regimes of operation of the HEB, depending on whether the radiation is above the gap frequency, far below it or close to it. These regimes are driven by the different patterns of photon absorption. The experiments have allowed us to derive the approximate gap frequency of the device under test as about 585 GHz. Microwave injection was used to probe the HEB impedance. Spontaneous switching between the superconducting (low resistive) state and a quasi-normal (high resistive) state was observed. The switching pattern depends on the particular regime of HEB operation and can assume a random pattern at pump frequencies below the gap to a regular relaxation oscillation running at a few MHz when pumped above the gap.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-2515 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1331  
Permanent link to this record
 

 
Author Krause, S.; Mityashkin, V.; Antipov, S.; Gol’tsman, G.; Meledin, D.; Desmaris, V.; Belitsky, V.; Rudziński, M. url  doi
openurl 
  Title Reduction of phonon escape time for nbn hot electron bolometers by using gan buffer layers Type Journal Article
  Year 2017 Publication IEEE Trans. Terahertz Sci. Technol. Abbreviated Journal IEEE Trans. Terahertz Sci. Technol.  
  Volume 7 Issue 1 Pages 53-59  
  Keywords NbN HEB mixer  
  Abstract In this paper, we investigated the influence of the GaN buffer layer on the phonon escape time of phonon-cooled hot electron bolometers (HEBs) based on NbN material and compared our findings to conventionally employed Si substrate. The presented experimental setup and operation of the HEB close to the critical temperature of the NbN film allowed for the extraction of phonon escape time in a simplified manner. Two independent experiments were performed at GARD/Chalmers and MSPU on a similar experimental setup at frequencies of approximately 180 and 140 GHz, respectively, and have shown reproducible and consistent results. By fitting the normalized IF measurement data to the heat balance equations, the escape time as a fitting parameter has been deduced and amounts to 45 ps for the HEB based on Si substrate as in contrast to a significantly reduced escape time of 18 ps for the HEB utilizing the GaN buffer layer under the assumption that no additional electron diffusion has taken place. This study indicates a high phonon transmissivity of the NbN-to-GaN interface and a prospective increase of IF bandwidth for HEB made of NbN on GaN buffer layers, which is desirable for future THz HEB heterodyne receivers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2156-3446 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1330  
Permanent link to this record
 

 
Author Baksheeva, K.; Ozhegov, R.; Goltsman, G.; Kinev, N.; Koshelets, V.; Kochnev, A.; Betzalel, N.; Puzenko, A.; Ben Ishai, P.; Feldman, Y. url  doi
openurl 
  Title The sub THz emission of the human body under physiological stress Type Journal Article
  Year 2021 Publication IEEE Trans. Terahertz Sci. Technol. Abbreviated Journal IEEE Trans. Terahertz Sci. Technol.  
  Volume Issue Pages  
  Keywords skin sub-THz emission, medicine  
  Abstract We present evidence that in the sub-THz frequency band, human skin can be considered as an electromagnetic bio-metamaterial, in that its natural emission is a product of skin tissue geometry and embedded structures. Radiometry was performed on 32 human subjects from 480 to 700 GHz. Concurrently, the subjects were exposed to stress, while heart pulse rate (PS) and galvanic skin response (GSR) were also measured. The results are substantially different from the expected black body radiation signal of the skin surface. PS and GSR correlate to the emissivity. Using a simulation model for the skin, we find that the sweat duct is a critical element. The simulated frequency spectra qualitatively match the measured emission spectra and show that our sub-THz emission is modulated by our level of mental stress. This opens avenues for the remote monitoring of the human state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number 9380570 Serial 1259  
Permanent link to this record
 

 
Author Lobanov, Y. V.; Vakhtomin, Y. B.; Pentin, I. V.; Rosental, V. A.; Smirnov, K. V.; Goltsman, G. N.; Volkov, O. Y.; Dyuzhikov, I. N.; Galiev, R. R.; Ponomarev, D. S.; Khabibullin, R. A. url  doi
openurl 
  Title Time-resolved measurements of light–current characteristic and mode competition in pulsed THz quantum cascade laser Type Journal Article
  Year 2021 Publication Optical Engineering Abbreviated Journal Optical Engineering  
  Volume 60 Issue 8 Pages 1-8  
  Keywords HEB, terahertz pulse generation, terahertz pulse detection, QCL, quantum cascade laser, superconducting hot electron bolometer  
  Abstract Quantum cascade lasers (QCL) are widely adopted as prominent and easy-to-use solid-state sources of terahertz radiation. Yet some applications require generation and detection of very sharp and narrow terahertz-range pulses with a specific spectral composition. We have studied time-resolved light-current (L–I) characteristics of multimode THz QCL operated with a fast ramp of the injection current. Detection of THz pulses was carried out using an NbN superconducting hot-electron bolometer with the time constant of the order of 1 ns while the laser bias current was swept during a single driving pulse. A nonmonotonic behavior of the L–I characteristic with several visually separated subpeaks was found. This behavior is associated with the mode competition in THz QCL cavity, which we confirm by L–I measurements with use of an external Fabry–Perot interferometer for a discrete mode selection. We also have demonstrated the possibility to control the L–I shape with suppression of one of the subpeaks by simply adjusting the off-axis parabolic mirror for optimal optical alignment for one of the laser modes. The developed technique paves the way for rapid characterization of pulsed THz QCLs for further studies of the possibilities of using this approach in remote sensing.  
  Address  
  Corporate Author Thesis  
  Publisher Spie Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number 10.1117/1.Oe.60.8.082019 Serial 1260  
Permanent link to this record
 

 
Author Manova, N. N.; Korneeva, Yu. P.; Korneev, A. A.; Slysz, W.; Voronov, B. M.; Gol'tsman, G. N. url  doi
openurl 
  Title Superconducting NbN single-photon detector integrated with quarter-wave resonator Type Journal Article
  Year 2011 Publication Tech. Phys. Lett. Abbreviated Journal Tech. Phys. Lett.  
  Volume 37 Issue 5 Pages 469-471  
  Keywords SSPD, SNSPD  
  Abstract The spectral dependence of the quantum efficiency of superconducting NbN single-photon detectors integrated with quarter-wave resonators based on Si3N4, SiO2, and SiO layers has been studied.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 664  
Permanent link to this record
 

 
Author Mohan, Nishant; Minaeva, Olga; Goltsman, Gregory N.; Saleh, Mohammed F.; Nasr, Magued B.; Sergienko, Alexander V.; Saleh, Bahaa E.; Teich, Malvin C. url  doi
openurl 
  Title Ultrabroadband coherence-domain imaging using parametric downconversion and superconducting single-photon detectors at 1064 nm Type Journal Article
  Year 2009 Publication Appl. Opt. Abbreviated Journal Appl. Opt.  
  Volume 48 Issue 20 Pages 4009–4017  
  Keywords SSPD, SNSPD, SPAD  
  Abstract Coherence-domain imaging systems can be operated in a single-photon-counting mode, offering low detector noise; this in turn leads to increased sensitivity for weak light sources and weakly reflecting samples. We have demonstrated that excellent axial resolution can be obtained in a photon-counting coherence-domain imaging (CDI) system that uses light generated via spontaneous parametric downconversion (SPDC) in a chirped periodically poled stoichiometric lithium tantalate (chirped-PPSLT) structure, in conjunction with a niobium nitride superconducting single-photon detector (SSPD). The bandwidth of the light generated via SPDC, as well as the bandwidth over which the SSPD is sensitive, can extend over a wavelength region that stretches from 700 to 1500 nm. This ultrabroad wavelength band offers a near-ideal combination of deep penetration and ultrahigh axial resolution for the imaging of biological tissue. The generation of SPDC light of adjustable bandwidth in the vicinity of 1064 nm, via the use of chirped-PPSLT structures, had not been previously achieved. To demonstrate the usefulness of this technique, we construct images for a hierarchy of samples of increasing complexity: a mirror, a nitrocellulose membrane, and a biological sample comprising onion-skin cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 652  
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol'tsman, G. N.; Elantiev, A. I.; Karasik, B. S.; Potoskuev, S. E. url  openurl
  Title Intense electromagnetic radiation heating of electrons of a superconductor in the resistive state Type Journal Article
  Year 1988 Publication Sov. J. Low Temp. Phys. Abbreviated Journal Sov. J. Low Temp. Phys.  
  Volume 14 Issue 7 Pages 414-420  
  Keywords HEB  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Duplicated as 1697 Approved no  
  Call Number Serial 236  
Permanent link to this record
 

 
Author Гершензон, Е. М.; Гольцман, Г. Н.; Елантьев, А. И.; Карасик, Б. С.; Потоскуев, С. Э. url  openurl
  Title Разогрев электронов в резистивном состоянии сверхпроводника электромагнитным излучением значительной интенсивности Type Journal Article
  Year 1988 Publication Физика низких температур Abbreviated Journal Физика низких температур  
  Volume 14 Issue 7 Pages 753-763  
  Keywords HEB  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Duplicated as 1697 Approved no  
  Call Number Serial 883  
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol'tsman, G. N.; Elant'ev, A. I.; Karasik, B. S.; Potoskuev, S. E. url  openurl
  Title Intense electromagnetic radiation heating of superconductor electrons in resistive state Type Journal Article
  Year 1988 Publication Fizika Nizkikh Temperatur Abbreviated Journal Fizika Nizkikh Temperatur  
  Volume 14 Issue 7 Pages 753-763  
  Keywords Nb HEB  
  Abstract An experimental study is made of the effect of intense radiation in the millimeter and submillimeter ranges on thin and narrow Nb films in the resistive state. It is found that the excess resistance resulting from radiation and the dependence of its relaxation time on radiation intensity and transport current can be explained in terms of the effect of electron heating. Quantitative agreement is obtained between the experimental data and a homogeneous electron heating model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1697  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: