|   | 
Details
   web
Records
Author Il'in, K. S.; Gol'tsman, G. N.; Voronov, B. M.; Sobolewski, Roman
Title Characterization of the electron energy relaxation process in NbN hot-electron devices Type Conference Article
Year 1999 Publication Proc. 10th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 10th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 390-397
Keywords HEB mixers, SSPD, SNSPD, NbN films, Nb films
Abstract We report on transient measurements of electron energy relaxation in NbN films with 300-fs time resolution. Using an electro-optic sampling technique, we have studied the photoresponse of 3.5-nm-thick NbN films deposited on sapphire substrates and exposed to 100-fs-wide optical pulses. Our experimental data analysis was based on the two-temperature model and has shown that in our films at the superconducting transition 10.5 K the inelastic electron-phonon scattering time was about (111}+-__.2) ps. This response time indicated that the maximum intermediate-frequency band of a NbN hot-electron phonon-cooled mixer should reach (16+41-3) GHz if one eliminates the bolometric phonon-heating effect. We have suggested several ways to increase the effectiveness of phonon cooling to achieve the above intrinsic value of the NbN mixer bandwidth.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1576
Permanent link to this record
 

 
Author Schwaab, G. W.; Hübers, H.-W.; Schubert, J.; Erichsen, Patrik; Gol'tsman, G.; Semenov, A.; Verevkin, A.; Cherednichenko, S.; Gershenzon, E.
Title A high resolution spectrometer for the investigation of molecular structures in the THZ range Type Conference Article
Year 1999 Publication Proc. 10th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 10th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 530-538
Keywords antireflection coatings, dielectric mirrors
Abstract A status report on the design study of a novel tunable far-infrared (TuFTR) spectrometer for the investigation of the structure of weakly bound molecular complexes is given. The goal is a sensitive TuFIR spectrometer with full frequency coverage from 1-6 THz. To hit the goal, advanced sources (e.g. p-Ge lasers) and detectors (e.g. superconducting hot electron bolometric (HEB) mixers) shall be employed to extend the technique of cavity ringdown spectroscopy, that is currently used at optical and infrared frequencies to the FIR spectral range. Critical for such a system are high-Q resonators that still allow good optical coupling, and wideband antireflection coatings to increase detector sensitivity and decrease optical path losses. 2 nd order effective media theory and an iterative multilayer algorithm have been employed to design wideband antireflection coatings for dielectrics with large dielectric constants like Ge or Si. Taking into account 6 layers, for Si bandwidths of 100% of the center frequency could be obtained with power reflectivities below 1% for both polarizations simultaneously. Wideband dielectric mirrors including absorption losses were also studied yielding a bandwidth of about 50% with reflectivities larger than 99.5%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1577
Permanent link to this record
 

 
Author Gerecht, E.; Musante, C. F.; Jian, H.; Yngvesson, K. S.; Dickinson, J.; Waldman, J.; Gol'tsman, G. N.; Yagoubov, P. A.; Voronov, B. M.; Gershenzon, E. M.
Title Measured results for NbN phonon-cooled hot electron bolometric mixers at 0.6-0.75 THz, 1.56 THz, and 2.5 THz Type Conference Article
Year 1998 Publication Proc. 9th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 9th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 105-114
Keywords NbN HEB mixers
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1587
Permanent link to this record
 

 
Author Svechnikov, S.; Verevkin, A.; Voronov, B.; Menschikov, E.; Gershenzon, E.; Gol'tsman, G.
Title Quasioptical phonon-cooled NbN hot electron bolometer mixers at 0.5-1.1 THz Type Conference Article
Year 1998 Publication Proc. 9th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 9th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 45-51
Keywords NbN HEB mixers
Abstract The noise performance of a receiver incorporating spiral antenna coupled NbN phonon-cooled superconducting hot electron bolometric mixer is measured from 450 GHz to 1200 GHz. The mixer element is thin (thickness nm) NbN 1.5 pm wide and 0.2 i.um long film fabricated by lift-off e-beam lithography on high-resistive silicon substrate. The noise of the receiver temperature is 1000 K at 800-900 GHz, 1200 K at 950 GHz, and 1600 K at 1.08 THz. The required (absorbed) local-oscillator power is —20 nW.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1586
Permanent link to this record
 

 
Author Gousev, Yu. P.; Olsson, H. K.; Gol'tsman, G. N.; Voronov, B. M.; Gershenzon, E. M.
Title NbN hot-electron mixer at radiation frequencies between 0.9 THz and 1.2 THz Type Conference Article
Year 1998 Publication Proc. 9th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 9th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 121-129
Keywords NbN HEB mixers
Abstract We report on noise temperature measurements for a NbN phonon-cooled hot-electron mixer at radiation frequencies between 0.9 THz and 1.2 THz. Radiation was coupled to the mixer, placed in a vacuum chamber of He cryostat, by means of a planar spiral antenna and a Si immersion lens. A backward-wave oscillator, tunable throughout the spectral range, delivered an output power of few 1.1W that was enough for optimum operation of the mixer. At 4.2 K ambient temperature and 1.025 THz radiation frequency, we obtained a receiver noise temperature of 1550 K despite of using a relatively noisy room-temperature amplifier at the intermediate frequency port. The noise temperature was fairly constant throughout the entire operation range and for intermediate frequencies from 1 GHz to 2 GHz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1588
Permanent link to this record