|   | 
Details
   web
Records
Author Hübers, H.-W.; Semenov, A.; Holldack, K.; Schade, U.; Wüstefeld, G.; Gol’tsman, G.
Title Time domain analysis of coherent terahertz synchrotron radiation Type Journal Article
Year 2005 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 87 Issue 18 Pages 184103 (1 to 3)
Keywords NbN HEB mixers, applications
Abstract The time structure of coherent terahertz synchrotron radiation at the electron storage ring of the Berliner Elektronensynchrotron und Speicherring Gesellschaft has been analyzed with a fast superconducting hot-electron bolometer. The emission from a single bunch of electrons was found to last ∼1500ps at frequencies around 0.4THz, which is much longer than the length of an electron bunch in the time domain (∼5ps). It is suggested that this is caused by multiple reflections at the walls of the beam line. The quadratic increase of the power with the number of electrons in the bunch as predicted for coherent synchrotron radiation and the transition from stable to bursting radiation were determined from a single storage ring fill pattern of bunches with different populations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1457
Permanent link to this record
 

 
Author Gol'tsman, G. N.; Korneev, A.; Rubtsova, I.; Milostnaya, I.; Chulkova, G.; Minaeva, O.; Smirnov, K.; Voronov, B.; Słysz, W.; Pearlman, A.; Verevkin, A.; Sobolewski, R.
Title Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications Type Journal Article
Year 2005 Publication Phys. Stat. Sol. (C) Abbreviated Journal Phys. Stat. Sol. (C)
Volume 2 Issue 5 Pages 1480-1488
Keywords NbN SSPD, SNSPD
Abstract We present our progress on the research and development of NbN superconducting single‐photon detectors (SSPD's) for ultrafast counting of near‐infrared photons for secure quantum communications. Our SSPD's operate in the quantum detection mode based on the photon‐induced hotspot formation and subsequent development of a transient resistive barrier across an ultrathin and submicron‐width superconducting stripe. The devices are fabricated from 4‐nm‐thick NbN films and kept in the 4.2‐ to 2‐K temperature range. The detector experimental quantum efficiency in the photon‐counting mode reaches above 40% for the visible light and up to 30% in the 1.3‐ to 1.55‐µm wavelength range with dark counts below 0.01 per second. The experimental real‐time counting rate is above 2 GHz and is limited by our readout electronics. The SSPD's timing jitter is below 18 ps, and the best‐measured value of the noise‐equivalent power (NEP) is 5 × 10–21 W/Hz1/2 at 1.3 µm. In terms of quantum efficiency, timing jitter, and maximum counting rate, our NbN SSPD's significantly outperform semiconductor avalanche photodiodes and photomultipliers in the 1.3‐ to 1.55‐µm range.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1610-1634 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1479
Permanent link to this record
 

 
Author Yagoubov, P.; van de Stadt, H.; Hoogeveen, R.; Koshelets, V.; Birk, Manfred; Murk, A.
Title OPTICAL DESIGN OF SUB-MILLIMETER SPECTROMETER FOR LIMB SOUNDER Type Journal Article
Year 2005 Publication International Symposium on Space Terahertz Technology Abbreviated Journal
Volume Issue Pages
Keywords Cryogenic terahertz heterodyne receiver, remote sensing, TELIS, submillimeter
Abstract TELIS (Terahertz and submm Limb Sounder) is a cooperation between DLR (Institute for Remote Sensing Technology, Germany), RAL (Rutherford Appleton Laboratories, UK) and SRON (National Institute for Space Research, the Netherlands), to build a three-channel balloon-borne heterodyne spectrometer for atmospheric research. The three receivers will operate simultaneously at 500 GHz (channel developed by RAL), at 550-650 GHz (SRON in collaboration with IREE), and at 1.8 THz (DLR). The balloon platform on which TELIS will fly also contains a Fourier transform spectrometer: MIPAS-B developed by the IMK (Institute of Meteorology and Climate research of the University of Karlsruhe, Germany). MIPAS-B will simultaneously measure within the range 680 to 2400 cm-1. The combination of the TELIS and MIPAS instruments will provide an unprecedented wealth of scientific data and will also be used to validate other instruments and atmospheric chemistry models. In this paper we present the optical design of TELIS with an emphasis on the 550-650 GHz channel. The main design goal was to generate a high efficiency antenna beam over the full frequency range, with low side lobes and close to diffraction limited angular resolution in the vertical direction at the sky. All these requirements had to be achieved within a small volume and low mass. Design and validation of the optics, as well as estimation of optical components tolerances, was done using commercial software packages ZEMAX and GRASP.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes event_dates=2005-05-31 – 2005-06-03; Approved no
Call Number Serial 414
Permanent link to this record
 

 
Author Datesman, A.M.; Schultz, J.C.; Lichtenberger, A.W.; Golish, D.; Walker, C.K.; Kooi, J.
Title Fabrication and characterization of niobium diffusion-cooled hot-electron bolometers on silicon nitride membranes Type Journal Article
Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal
Volume 15 Issue 2 Pages 928-931
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 439
Permanent link to this record
 

 
Author Koshelets, V. P.; Shitov, S. V.; Ermakov, A. B.; Filippenko, L. V.; Koryukin, O. V.; Khudchenko, A. V.; Torgashin, M. Yu.; Yagoubov, P. A.; Hoogeveen, R. W. M.; Pylypenko, O. M.
Title Superconducting integrated receiver for TELIS Type Journal Article
Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal
Volume 15 Issue 2 Pages 960-963
Keywords SIR
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 517
Permanent link to this record
 

 
Author Koshelets, V.P.; Dmitriev, P.N.; Ermakov, A.B.; Sobolev, A.S.; Torgashin, M.Y.; Kurin, V.V.; Pankratov, A.L.; Mygind, J.
Title Optimization of the phase-locked flux-flow oscillator for the submm integrated receiver Type Journal Article
Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal
Volume 15 Issue 2 Pages 964-967
Keywords SIR
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 515
Permanent link to this record
 

 
Author Morozov, D. V.; Smirnov, K. V.; Smirnov, A. V.; Lyakhov, V. A.; Goltsman, G. N.
Title A millimeter-submillimeter phonon-cooled hot-electron bolometer mixer based on two-dimensional electron gas in an AlGaAs/GaAs heterostructure Type Journal Article
Year 2005 Publication Semicond. Abbreviated Journal Semicond.
Volume 39 Issue 9 Pages 1082-1086
Keywords 2D electron gas, AlGaAs/GaAs heterostructures, mixers
Abstract Experimental results obtained by studying the main characteristics of a millimeter-submillimeter wave mixer based on the hot-electron effect in a two-dimensional electron gas in a AlGaAs/GaAs heterostructure with a phonon-scattering cooling mechanism for charge carriers are reported. The gain bandwidth of the mixer is 4 GHz, the internal conversion losses are 13 dB, and the optimum local-oscillator power is 0.5 μW (for a mixer area of 1 μm2). It is shown that a millimeter-submillimeter-wave receiver with a noise temperature of 1900 K can be developed on the basis of a AlGaAs/GaAs mixer. This mixer also appears to be promising for use in array receiver elements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-7826 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1463
Permanent link to this record
 

 
Author Jiang, L.; Zhang, W.; Yao, Q. J.; Lin, Z. H.; Li, J.; Shi, S. C.; Svechnikov, S. I.; Vachtomin, Y. B.; Antipov, S. V.; Voronov, B. M.; Kaurova, N. S.; Gol'tsman, G. N.
Title Characterization of a quasi-optical NbN superconducting hot-electron bolometer mixer Type Conference Article
Year 2005 Publication Proc. PIERS Abbreviated Journal Proc. PIERS
Volume 1 Issue 5 Pages 587-590
Keywords NbN HEB mixers
Abstract In this paper, we report the performance of a quasi-optical NbN superconducting HEB (hot electron bolome-ter) mixer measured at 500 GHz. The quasi-optical NbN superconducting HEB mixer is cryogenically cooled bya 4-K close-cycled refrigerator. Its receiver noise temperature and conversion gain are thoroughly investigatedfor different LO pumping levels and dc biases. The lowest receiver noise temperature is found to be approxi-mately 1200 K, and reduced to about 445 K after correcting theloss of the measurement system. The stabilityof the mixer’s IF output power is also demonstrated.
Address Hangzhou, China
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1931-7360 ISBN Medium
Area Expedition Conference Progress In Electromagnetics Research Symposium
Notes Approved no
Call Number Serial 1482
Permanent link to this record
 

 
Author
Title Single aperture far-infrared observatory Type
Year 2005 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ safir_proj Serial 379
Permanent link to this record
 

 
Author Корнеев, А. А.; Минаева, О.; Рубцова, И.; Милостная, И.; Чулкова, Г.; Воронов, Б.; Смирнов, К.; Селезнёв, В.; Гольцман, Г.; Pearlman, A.; Slysz, W.; Cross, A.; Alvarez, P.; Верёвкин, А.; Sobolewski, R.
Title Сверхпроводящий однофотонный детектор на основе ультратонкой пленки NbN Type Journal Article
Year 2005 Publication Квантовая электроника Abbreviated Journal
Volume 35 Issue 8 Pages 698-700
Keywords NbN SSPD, SNSPD
Abstract Представлены результаты исследований сверхпроводящих однофотонных детекторов, изготовленных из ультратонкой пленки NbN. Развитие технологического процесса изготовления детекторов, а также снижение рабочей температуры до 2 К позволили существенно увеличить квантовую эффективность: для видимого света (λ = 0.56 мкм) она составила 30%–40%, т.е. достигла предела, определяемого коэффициентом поглощения пленки. С ростом длины волны квантовая эффективность экспоненциально падает, составляя ~20% на λ=1.55 мкм и ~0.02% на λ = 5 мкм. При скорости темнового счета ~10-4s-1 экспериментально измеренная эквивалентная мощность шума составила 1.5 × 10-20 Вт/Гц-1/2; в дальнейшем она может быть уменьшена до рекордно низкого значения 5 × 10-21 Вт/Гц-1/2. Временное разрешение детектора равно 30 пс.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Duplicated as 383 (Superconducting single-photon ultrathin NbN film detector) Approved no
Call Number Serial 382
Permanent link to this record