toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Goltsman, G. url  openurl
  Title Simple method for stabilizing power of submillimetric spectrometer Type Journal Article
  Year 1972 Publication Pribory i Tekhnika Eksperimenta Abbreviated Journal Pribory i Tekhnika Eksperimenta  
  Volume Issue 1 Pages 136  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Mezhdunarodnaya Kniga 39 Dimitrova Ul., Moscow, 113095, Russia Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1738  
Permanent link to this record
 

 
Author Ozhegov, R. V.; Smirnov, A. V.; Vakhtomin, Yu. B.; Smirnov, K. V.; Divochiy, A. V.; Goltsman, G. N. url  isbn
openurl 
  Title Ultrafast superconducting bolometer receivers for terahertz applications Type Abstract
  Year 2009 Publication Proc. PIERS Abbreviated Journal Proc. PIERS  
  Volume Issue Pages 867  
  Keywords HEB  
  Abstract The research by the group of Moscow State Pedagogical University into the hot-electron phenomena in thin superconducting films has led to the development of new types of detectors and their use both in fundamental and applied studies. In this paper, we present the results of testing the terahertz HEB receiver systems based on ultrathin (∼ 4 nm) NbN and MoRe detectors with a response time of 50 ps and 1 ns, respectively. We have developed three types of devices which differ in the way a terahertz signal is coupled to the detector and cover the following ranges: 0.3–3 THz, 0.1–30 THz and 25–70 THz. In the case of the receiving system optimized for 0.3–3 THz, the sensitive element (a strip of asuperconductor with planar dimensions of 0.2μm (length) by 1.7μm (width)) was integrated witha planar broadband log-spiral antenna. For additional focusing ofthe incident radiation a silicon hyperhemispherical lens was used. For the 0.1–30 THz receivingsystem, the sensitive element was patterned as parallel strips(2μm wide each) filling an area of 500×500μm2with a filling factor of 0.5. In the receivingsystem of this type we used direct coupling of the incident radiation to the sensitive element. Inthe 25–70 THz range (detector type 2/2a in Table 1) we used a square-shaped superconductingdetector with planar dimensions of 10×10μm2. Incident radiation was coupled to the detectorwith the use of a germanium hyperhemispherical lens.The response time of the above receiving systems is determined by the cooling rate of the hotelectrons in the film. That depends on the electron-phonon interaction time, which is less forultrathin NbN than in MoRe.  
  Address Moscow, Russia  
  Corporate Author Thesis  
  Publisher The Electromagnetics Academy Place of Publication 777 Concord Avenue, Suite 207 Cambridge, MA 02138 Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1559-9450 ISBN 978-1-934142-09-7 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ sasha @ ozhegovultrafast Serial 1022  
Permanent link to this record
 

 
Author Tretyakov, I.; Shurakov, A.; Perepelitsa, A.; Kaurova, N.; Svyatodukh, S.; Zilberley, T.; Ryabchun, S.; Smirnov, M.; Ovchinnikov, O.; Goltsman, G. url  doi
openurl 
  Title Room temperature silicon detector for IR range coated with Ag2S quantum dots Type Journal Article
  Year 2019 Publication Phys. Status Solidi RRL Abbreviated Journal Phys. Status Solidi RRL  
  Volume 13 Issue 9 Pages 1900187-(1-6)  
  Keywords  
  Abstract For decades, silicon has been the chief technological semiconducting material of modern microelectronics and has a strong influence on all aspects of the society. Applications of Si-based optoelectronic devices are limited to the visible and near infrared (IR) ranges. For photons with an energy less than 1.12 eV, silicon is almost transparent. The expansion of the Si absorption to shorter wavelengths of the IR range is of considerable interest for optoelectronic applications. By creating impurity states in Si, it is possible to cause sub-bandgap photon absorption. Herein, an elegant and effective technology of extending the photo-response of Si toward the IR range is presented. This approach is based on the use of Ag 2 S quantum dots (QDs) planted on the surface of Si to create impurity states in the Si bandgap. The specific sensitivity of the room temperature zero-bias Si_Ag 2 Sp detector is 10 11 cm Hz W 1 at 1.55 μm. Given the variety of available QDs and the ease of extending the photo-response of Si toward the IR range, these findings open a path toward future studies and development of Si detectors for technological applications. The current research at the interface of physics and chemistry is also of fundamental importance to the development of Si optoelectronics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6254 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1149  
Permanent link to this record
 

 
Author Tiulina, V.; Iomdina, E.; Goltsman, G.; Seliverstov, S.; Sianosyan, A.; Teplyakova, K.; Rusova, A.; Zaitsev, S.; Zernii, E.; Senin, I. url  doi
openurl 
  Title UVB promotes the initiation of uveitic inflammatory and changes in thehydration of the cornea in vivo Type Miscellaneous
  Year 2019 Publication FEBS Open Bio Abbreviated Journal FEBS Open Bio  
  Volume 9 Issue S1 Pages 79  
  Keywords medicine; scheimpflug imaging; UVB; confocal microscopy; cornea; optical coherent tomography; rabbit eyes; terahertz radiation  
  Abstract Recently, active research has been conducted in the field of terahertz (THz) scanning of human tissues for non­invasive determination of their hydration level, which haves hown high diagnostic efficiency of this technology in various pathological conditions. Recently, we have developed a laboratory model of the facility for monitoring the state of the water balance of the cornea using THz scanning in vivo, which opens up the possibility of applying this approach in ophthalmology. The aim of the work wasto compare the results of the THz scan of the cornea with its clinical changes using the example of an experimental model of the UV­ induced keratouveitis. Anexperimental study, which included a comprehensive assessment of clinical changes in the cornea of rabbits during keratouveitis induction, revealed a decrease in the stability of the tear film, pathological changes in the corneal epithelium and stroma, as well as its anatomical and optical parameters. Comparison of data obtained in the THz scan of the cornea with tears production, optical coherence tomography and confocal microscopy showed their consistency in all observation periods, which allows us to conclude that the developed laboratory setup works and the feasibility of further research to promote the corneal hydration evaluation technology in clinical practice. Acknowledgements: Research was funded by the RSF, grant number 16­15­00255.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-5463 ISBN Medium  
  Area Expedition Conference  
  Notes Poster P-01-040 Approved no  
  Call Number Serial 1276  
Permanent link to this record
 

 
Author Gayduchenko, I. A.; Moskotin, M. V.; Matyushkin, Y. E.; Rybin, M. G.; Obraztsova, E. D.; Ryzhii, V. I.; Goltsman, G. N.; Fedorov, G. E. url  doi
openurl 
  Title The detection of sub-terahertz radiation using graphene-layer and graphene-nanoribbon FETs with asymmetric contacts Type Conference Article
  Year 2018 Publication Materials Today: Proc. Abbreviated Journal Materials Today: Proc.  
  Volume 5 Issue 13 Pages 27301-27306  
  Keywords graphene nanoribbons, graphene-nanoribbon, GNR FET, field effect transistor  
  Abstract We report on the detection of sub-terahertz radiation using single layer graphene and graphene-nanoribbon FETs with asymmetric contacts (one is the Schottky contact and one – the Ohmic contact). We found that cutting graphene into ribbons a hundred nanometers wide leads to a decrease of the response to sub-THz radiation. We show that suppression of the response in the graphene nanoribbons devices can be explained by unusual properties of the Schottky barrier on graphene-vanadium interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2214-7853 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1316  
Permanent link to this record
 

 
Author Korneev, A.; Korneeva, Y.; Florya, I.; Voronov, B.; Goltsman, G. url  doi
openurl 
  Title NbN nanowire superconducting single-photon detector for mid-infrared Type Journal Article
  Year 2012 Publication Phys. Procedia Abbreviated Journal Phys. Procedia  
  Volume 36 Issue Pages 72-76  
  Keywords NbN SSPD, SNSPD  
  Abstract Superconducting single-photon detectors (SSPD) is typically 100 nm-wide supercondiucting strip in a shape of meander made of 4-nm-thick film. To reduce response time and increase voltage response a parallel connection of the strips was proposed. Recently we demonstrated that reduction of the strip width improves the quantum effciency of such a detector at wavelengths longer than 1.5 μm. Being encourage by this progress in quantum effciency we improved the fabrication process and made parallel-wire SSPD with 40-nm-wide strips covering total area of 10 μm x 10 μm. In this paper we present the results of the characterization of such a parallel-wire SSPD at 10.6 μm wavelength and demonstrate linear dependence of the count rate on the light power as it should be in case of single-photon response.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1875-3892 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1382  
Permanent link to this record
 

 
Author Zhang, W.; Miao, W.; Yao, Q. J.; Lin, Z. H.; Shi, S. C.; Gao, J. R.; Goltsman, G. N. url  doi
openurl 
  Title Spectral response and noise temperature of a 2.5 THz spiral antenna coupled NbN HEB mixer Type Journal Article
  Year 2012 Publication Phys. Procedia Abbreviated Journal Phys. Procedia  
  Volume 36 Issue Pages 334-337  
  Keywords NbN HEB mixer  
  Abstract We report on a 2.5 THz spiral antenna coupled NbN hot electron bolometer (HEB) mixers, fabricated with in-situ process. The receiver noise temperature with lowest value of 1180 K is in good agreement with calculated quantum efficiency factor as a function of bias voltage. In addition, the measured spectral response of the spiral antenna coupled NbN HEB mixer shows broad frequency coverage of 0.8-3 THz, and corrected response for optical losses, FTS, and coupling efficiency between antenna and bolometer falls with frequency due to diffraction-limited beam of lens/antenna combination.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1875-3892 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1381  
Permanent link to this record
 

 
Author Goltsman, G.; Korneev, A.; Izbenko, V.; Smirnov, K.; Kouminov, P.; Voronov, B.; Kaurova, N.; Verevkin, A.; Zhang, J.; Pearlman, A.; Slysz, W.; Sobolewski, R. url  doi
openurl 
  Title Nano-structured superconducting single-photon detectors Type Journal Article
  Year 2004 Publication Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Abbreviated Journal  
  Volume 520 Issue 1-3 Pages 527-529  
  Keywords NbN SSPD, SNSPD  
  Abstract NbN detectors, formed into meander-type, 10×10-μm2 area structures, based on ultrathin (down to 3.5-nm thickness) and nanometer-width (down to below 100 nm) NbN films are capable of efficiently detecting and counting single photons from the ultraviolet to near-infrared optical wavelength range. Our best devices exhibit QE >15% in the visible range and ∼10% in the 1.3–1.5-μm infrared telecommunication window. The noise equivalent power (NEP) ranges from ∼10−17 W/Hz1/2 at 1.5 μm radiation to ∼10−19 W/Hz1/2 at 0.56 μm, and the dark counts are over two orders of magnitude lower than in any semiconducting competitors. The intrinsic response time is estimated to be <30 ps. Such ultrafast detector response enables a very high, GHz-rate real-time counting of single photons. Already established applications of NbN photon counters are non-invasive testing and debugging of VLSI Si CMOS circuits and quantum communications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1495  
Permanent link to this record
 

 
Author Ovchinnikov, O. V.; Perepelitsa, A. S.; Smirnov, M. S.; Latyshev, A. N.; Grevtseva, I. G.; Vasiliev, R. B.; Goltsman, G. N.; Vitukhnovsky, A. G. url  doi
openurl 
  Title Luminescence of colloidal Ag2S/ZnS core/shell quantum dots capped with thioglycolic acid Type Journal Article
  Year 2020 Publication J. Luminescence Abbreviated Journal J. Luminescence  
  Volume 220 Issue Pages 117008 (1 to 7)  
  Keywords Ag2S QD, quantum dots  
  Abstract The features of IR luminescence of colloidal AgS QDs passivated with thioglycolic acid (AgS/TGA) under the formation of AgS/ZnS/TGA core/shell QDs are considered. A 4.5-fold increase in the quantum yield of recombination IR luminescence within the band with a peak at 960 nm (1.29 eV), full width at half maximum of 250 nm (0.34 eV), and the Stokes shift with respect to the exciton absorption of 0.6 eV was found. The increase in the IR luminescence intensity of AgS/ZnS/TGA QDs is accompanied by an increase in the average luminescence lifetime from 2.9 ns to 14.3 ns, which is explained as “healing” of surface trap states during the formation of the ZnS shell. For the first time, the enhancement of the luminescence intensity photodegradation (hereinafter referred to as fatigue) was found during the formation of the AgS/ZnS/TGA core/shell QDs. The luminescence fatigue is irreversible. We conclude that the initial stage of photolysis of the AgS core QDs under laser irradiation plays a key role. Low-atomic photolytic clusters of silver formed on the AgS core QDs act as luminescence quenching centers and do not reveal structural transformations into AgS, provided that the clusters are not in contact with TGA.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2313 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1267  
Permanent link to this record
 

 
Author Ozhegov, R. V.; Gorshkov, K. N.; Vachtomin, Y. B.; Smirnov, K. V.; Finkel, M. I.; Goltsman, G. N.; Kiselev, O. S.; Kinev, N. V.; Filippenko, L. V.; Koshelets, V. P. url  doi
openurl 
  Title Terahertz imaging system based on superconducting heterodyne integrated receiver Type Conference Article
  Year 2014 Publication Proc. THz and Security Applications Abbreviated Journal Proc. THz and Security Applications  
  Volume Issue Pages 113-125  
  Keywords SIS mixer, SIR, THz imaging  
  Abstract The development of terahertz imaging instruments for security systems is on the cutting edge of terahertz technology. We are developing a THz imaging system based on a superconducting integrated receiver (SIR). An SIR is a new type of heterodyne receiver based on an SIS mixer integrated with a flux-flow oscillator (FFO) and a harmonic mixer which is used for phase-locking the FFO. Employing an SIR in an imaging system means building an entirely new instrument with many advantages compared to traditional systems.

In this project we propose a prototype THz imaging system using an 1 pixel SIR and 2D scanner. At a local oscillator frequency of 500 GHz the best noise equivalent temperature difference (NETD) of the SIR is 10 mK at an integration time of 1 s and a detection bandwidth of 4 GHz. The scanner consists of two rotating flat mirrors placed in front of the antenna consisting of a spherical primary reflector and an aspherical secondary reflector. The diameter of the primary reflector is 0.3 m. The operating frequency of the imaging system is 600 GHz, the frame rate is 0.1 FPS, the scanning area is 0.5 × 0.5 m2, the image resolution is 50 × 50 pixels, the distance from an object to the scanner was 3 m. We have obtained THz images with a spatial resolution of 8 mm and a NETD of less than 2 K.
 
  Address  
  Corporate Author Thesis  
  Publisher Springer Netherlands Place of Publication Dordrecht Editor Corsi, C.; Sizov, F.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-94-017-8828-1 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1368  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: