|   | 
Details
   web
Records
Author Yazoubov, P.; Kroug, M.; Merkel, H.; Kollberg, E.; Gol'tsman, G.; Lipatov, A.; Svechnikov, S.; Gershenzon, E.
Title Quasioptical NbN phonon-cooled hot electron bolometric mixers with low optimal local oscillator power Type Conference Article
Year 1998 Publication Proc. 9th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 9th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 131-140
Keywords NbN HEB mixers
Abstract In this paper, the noise perform.ance of NIN based phonon-cooled Hot Electron Bolometric (HEB) quasioptical mixers is investigated in the 0.55-1.1 THz frequency range. The best results of the DSB noise temperature are: 500 K at 640 GHz, 600 K at 750 GHz, 850 K at 910 GHz and 1250 K at 1.1 THz. The water vapor in the signal path causes a significant contribution to the measured noise temperature around 1.1 THz. The required LO power is typically about 60 nW. The frequency response of the spiral antenna+lens system is measured using a Fourier Transform Spectrometer with the HEB operating in a detector mode.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1589
Permanent link to this record
 

 
Author Il'in, K. S.; Cherednichenko, S. I.; Gol'tsman, G. N.; Currie, M.; Sobolewski, R.
Title Comparative study of the bandwidth of phonon-cooled NbN hot-electron bolometers in submillimeter and optical wavelength ranges Type Conference Article
Year 1998 Publication Proc. 9th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 9th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 323-330
Keywords NbN HEB mixers
Abstract We report the results of the bandwidth measurements of NbN hot-electron bolometers, perfomied in the terahertz frequency domain at 140 GHz and 660 GHz and in time domain in the optical range at the wavelength of 395 nm.. Our studies were done on 3.5-nm-thick NbN films evaporated on sapphire substrates and patterned into ilin-size microbridges. In order to measure the gain bandwidth, we used two identical BWOs (140 or 660 GHz), one functioning as a local oscillator and the other as a signal source. The bandwidth we achieved was 3.5-4 GHz at 4.2 K with the optimal LO and DC biases. Time-domain measurements with a resolution below 300 fs were performed using an electro-optic sampling system, in the temperature range between 4.2 K to 9 K at various values of the bias current and optical power. The obtained response time of the NbN hot-electron bolometer to —100- fs-wide Ti:sapphire laser pulses was about 27 ps, what corresponds to the 5.9 GHz gain bandwidth.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1590
Permanent link to this record
 

 
Author Cherednichenko, S.; Yagoubov, P.; Il'In, K.; Gol'tsman, G.; Gershenzon, E.
Title Large bandwidth of NbN phonon-cooled hot-electron bolometer mixers on sapphire substrates Type Conference Article
Year 1997 Publication Proc. 8th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 8th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 245-257
Keywords NbN HEB mixers, fabrication process
Abstract The bandwidth of NbN phonon-cooled hot electron bolometer mixers has been systematically investigated with respect to the film thickness and film quality variation. The films, 2.5 to 10 mm thick, were fabricated on sapphire substrates using DC reactive magnetron sputtering. All devices consisted of several parallel strips, each 1 1.1 wide and 211 long, placed between Ti-Au contact pads. To measure the gain bandwidth we used two identical BWOs operating in the 120-140 GHz frequency range, one functioning as a local oscillator and the other as a signal source. The majority of the measurements were made at an ambient temperature of 4.5 K with optimal LO and DC bias. The maximum 3 dB bandwidth (about 4 GHz) was achieved for the devices made of films which were 2.5-3.5 nm thick, had a high critical temperature, and high critical current density. A theoretical analysis of bandwidth for these mixers based on the two-temperature model gives a good description of the experimental results if one assumes that the electron temperature is equal to the critical temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 276
Permanent link to this record
 

 
Author Kawamura, J.; Blundell, R.; Tong, C-Y. E.; Gol'tsman, G.; Gershenzon, E.; Voronov, B.; Cherednichenko, S.
Title Phonon-cooled NbN HEB mixers for submillimeter wavelengths Type Conference Article
Year 1997 Publication Proc. 8th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 8th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 23-28
Keywords waveguide NbN HEB mixers
Abstract The noise performance of receivers incorporating NbN phonon-cooled superconducting hot electron bolometric mixers is measured from 200 GHz to 900 GHz. The mixer elements are thin-film (thickness — 4 nm) NbN with —5 to 40 pm area fabricated on crystalline quartz sub- strates. The receiver noise temperature from 200 GHz to 900 GHz demonstrates no unexpected degradation with increasing frequency, being roughly TRx ,; 1-2 K The best receiver noise temperatures are 410 K (DSB) at 430 GHz, 483 K at 636 GHz, and 1150 K at 800 GHz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 275
Permanent link to this record
 

 
Author Ekström, H.; Kollberg, E.; Yagoubov, P.; Gol'tsman, G.; Gershenzon, E.; Yngvesson, S.
Title Phonon cooled ultra thin NbN hot electron bolometer mixers at 620 GHz Type Conference Article
Year 1997 Publication Proc. 8th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 8th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 29-35
Keywords NbN HEB mixers
Abstract We have measured the noise performance and gain bandwidth of 35 A thin NbN hot-electron mixers integrated with spiral antennas on silicon substrate lenses at 620 GHz. A double-sideband receiver noise temperature less than 1300 K has been obtained with a 3 dB bandwidth of GHz. The gain bandwidth is 3.2 GHz. A lower noise temperature of 1100 K has been achieved with an improved set-up. The mixer output noise dominated by thermal fluctuations is about 50-60 K, and the SSB receiver and intrinsic conversion gain is about -18 and -12 dB, respectively. Without mismatch losses and excluding the loss from the beamsplitter, we expect to achieve a receiver noise temperature of less than 700 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1604
Permanent link to this record