|   | 
Details
   web
Records
Author Verevkin, A.; Zhang, J.; Slysz, W.; Sobolewski, Roman; Lipatov, A.; Okunev, O.; Chulkova, G.; Korneev, A.; Smimov, K.; Gol'tsman, G. N.
Title Spectral sensitivity and temporal resolution of NbN superconducting single-photon detectors Type Conference Article
Year 2002 Publication Proc. 13th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 13th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 105-111
Keywords NbN SSPD, SNSPD
Abstract We report our studies on spectral sensitivity and time resolution of superconducting NbN thin film single-photon detectors (SPDs). Our SPDs exhibit an everimentally measured detection efficiencies (DE) from — 0.2% at 2=1550 nm up to —3% at lambda=405 nm wavelength for 10-nm film thickness devices and up to 3.5% at lambda=1550 nm for 3.5-nm film thickness devices. Spectral dependences of detection efficiency (DE) at 2=0.4 —3.0 pm range are presented. With variable optical delay setup, it is shown that NbN SPD potentially can resolve optical pulses with the repetition rate up to 10 GHz at least. The observed full width at the half maximum (FWHM) of the signal pulse is about 150-180 ps, limited by read-out electronics. The jitter of NbN SPD is measured to be —35 ps at optimum biasing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1528
Permanent link to this record
 

 
Author Verevkin, A.; Xu, Y.; Zheng, X.; Williams, C.; Sobolewski, Roman; Okunev, O.; Smirnov, K.; Chulkova, G.; Korneev, A.; Lipatov, A.; Gol’tsman, G. N.
Title Superconducting NbN-based ultrafast hot-electron single-photon detector for infrared range Type Conference Article
Year 2001 Publication Proc. 12th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 12th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 462-468
Keywords NbN SSPD, SNSPD
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1539
Permanent link to this record
 

 
Author Słysz, W.; Węgrzecki, M.; Bar, J.; Grabiec, P.; Gol'tsman, G. N.; Verevkin, A.; Sobolewski, R.
Title NbN superconducting single-photon detector coupled with a communication fiber Type Journal Article
Year 2005 Publication Elektronika : konstrukcje, technologie, zastosowania Abbreviated Journal
Volume 46 Issue 6 Pages 51-52
Keywords NbN SSPD, SNSPD
Abstract We present novel superconducting single-photon detectors (SSPDs), ba­sed on ultrathin NbN films, designed for fiber-based quantum communica­tions (lambda = 1.3 žm and 1.55 žm). For fiber-based operation, our SSPDs contain a special micromechanical construction integrated with the NbN structure, which enables efficient and mechanically very stabile fiber coupling. The detectors combine GHz counting rate, high quantum efficiency and very low level of dark counts. At 1.3 – 1.55 žm wavelength range our detector exhibits a quantum efficiency up to 10%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Polish Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1481
Permanent link to this record
 

 
Author Semenov, A.; Engel, A.; Il'in, K.; Gol'tsman, G.; Siegel, M.; Hübers, H.-W.
Title Ultimate performance of a superconducting quantum detector Type Journal Article
Year 2003 Publication Eur. Phys. J. Appl. Phys. Abbreviated Journal Eur. Phys. J. Appl. Phys.
Volume 21 Issue 3 Pages 171-178
Keywords NbN SSPD, SNSPD
Abstract We analyze the ultimate performance of a superconducting quantum detector in order to meet requirements for applications in near-infrared astronomy and X-ray spectroscopy. The detector exploits a combined detection mechanism, in which avalanche quasiparticle multiplication and the supercurrent jointly produce a voltage response to a single absorbed photon via successive formation of a photon-induced and a current-induced normal hotspot in a narrow superconducting strip. The response time of the detector should increase with the photon energy providing energy resolution. Depending on the superconducting material and operation conditions, the cut-off wavelength for the single-photon detection regime varies from infrared waves to visible light. We simulated the performance of the background-limited infrared direct detector and X-ray photon counter utilizing the above mechanism. Low dark count rate and intrinsic low-frequency cut-off allow for realizing a background limited noise equivalent power of 10−20 W Hz−1/2 for a far-infrared direct detector exposed to 4-K background radiation. At low temperatures, the intrinsic response time of the counter is rather determined by diffusion of nonequilibrium electrons than by the rate of energy transfer to phonons. Therefore, thermal fluctuations do not hamper energy resolution of the X-ray photon counter that should be better than 10−3 for 6-keV photons. Comparison of new data obtained with a Nb based detector and previously reported results on NbN quantum detectors support our estimates of ultimate detector performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1286-0042 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 534
Permanent link to this record
 

 
Author Sobolewski, Roman; Xu, Ying; Zheng, Xuemei; Williams, Carlo; Zhang, Jin; Verevkin, Aleksandr; Chulkova, Galina; Korneev, Alexander; Lipatov, Andrey; Okunev, Oleg; Smirnov, Konstantin; Gol'tsman, Gregory N.
Title Spectral sensitivity of the NbN single-photon superconducting detector Type Journal Article
Year 2002 Publication IEICE Trans. Electron. Abbreviated Journal IEICE Trans. Electron.
Volume E85-C Issue 3 Pages 797-802
Keywords NbN SSPD, SNSPD
Abstract We report our studies on the spectral sensitivity of superconducting NbN thin-film single-photon detectors (SPD's) capable of GHz counting rates of visible and near-infrared photons. In particular, it has been shown that a NbN SPD is sensitive to 1.55-µm wavelength radiation and can be used for quantum communication. Our SPD's exhibit experimentally measured intrinsic quantum efficiencies from 20% at 800 nm up to 1% at 1.55-µm wavelength. The devices demonstrate picosecond response time (<100 ps, limited by our readout system) and negligibly low dark counts. Spectral dependencies of photon counting of continuous-wave, 0.4-µm to 3.5-µm radiation, and 0.63-µm, 1.33-µm, and 1.55-µm laser-pulsed radiations are presented for the single-stripe-type and meander-type devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1531
Permanent link to this record