toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Gol'tsman, G.; Kouminov, P.; Goghidze, I.; Gershenzon, E. url  doi
openurl 
  Title Nonequilibrium kinetic inductive response of YBCO thin films to low power laser pulses Type Journal Article
  Year 1995 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 5 Issue 2 Pages 2591-2594  
  Keywords YBCO HTS KID  
  Abstract We have discovered a transient nonequilibrium kinetic inductive voltage response of YBCO thin films to 20 ps pulses of YAG:Nd laser radiation with 0.63 /spl mu/m and 1.54 /spl mu/m wavelength. By increasing the sensitivity of the read-out system with 100 ps resolution time and diminishing the light intensity (fluence 0.1-2 /spl mu/J/cm/sup 2/) and transport current (density /spl les/10/sup 5/ A/cm/sup 2/) we were able to observe a peculiar bipolar signal form with nearly equal amplitudes for each sign. The integration of the kinetic inductive response over time gives the result which is qualitatively, of the same form as the response in the resistive and normal states: the nonequilibrium picosecond scale component is followed by the bolometric nanosecond component. The nonequilibrium response is interpreted as suppression of the order parameter by excess quasiparticles followed by a change both in resistance (for the resistive state) and in kinetic inductance (for the superconducting state).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1621  
Permanent link to this record
 

 
Author Benford, Dominic; Moseley, Harvey; Zmuidzinas, Jonas openurl 
  Title Direct detectors for the Einstein inflation probe Type Conference Article
  Year 2009 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 155 Issue 1 Pages 012001 (1 to 49)  
  Keywords KID, MKID, CMB  
  Abstract Here we review the principles of operation, history, present status, and future prospects for the primary candidate detectors for Cosmic Microwave Background (CMB) polarization studies. The three detector types we will discuss are semiconductor-based bolometers, superconducting transition edge sensor (TES) bolometer, and Microwave Kinetic Inductance Detectors (MKIDs). All of these detector types can provide the sensitivity to permit background-limited measurements of the CMB, but the ultimate selection of detectors will be largely determined by the ease of production and reliability of large arrays of such detectors. This paper describes the present state of development of these detectors, efforts to integrate them into large arrays, and the detector system developments necessary to enable a space CMB polarization mission.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Recommended by Klapwijk Approved no  
  Call Number Serial 913  
Permanent link to this record
 

 
Author Titova, N; Kardakova, A.; Tovpeko, N; Ryabchun, S.; Mandal, S.; Morozov, D.; Klemencic, G. M.; Giblin, S.R.; Williams, O. A.; Goltsman, G. N. openurl 
  Title Superconducting diamond films as perspective material for direct THz detectors Type Abstract
  Year 2017 Publication Proc. 28th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 28th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 82  
  Keywords KID, HEB, superconducting diamond films, boron-doped diamond films, Al, TiN, Si substrates, NEP  
  Abstract Superconducting films with a high resistivity in the normal state have established themselves as the best materials for direct THz radiation sensors, such as kinetic inductance detectors (KIDs) [1] and hot electron bolometers (nano-HEBs) [2]. The primary characteristics of the future instrument such as the sensitivity and the response time are determined by the material parameters such as the electron-phonon (e-ph) interaction time, the electron density and the resistivity of the material. For direct detectors, such as KIDs and nano-HEBs, to provide a high sensitivity and low noise one prefer materials with long e-ph relaxation times and low values of the electron density. As a potential material for THz radiation detection we have studied superconducting diamond films. A significant interest to diamond for the development of electronic devices is due to the evolution of its properties with the boron dopant concentration. At a high boron doping concentration, n B ~5·10 20 cm -3 , diamond has been reported to become a superconducting with T c depending on the doping level. Our previous study of energy relaxation in single-crystalline boron-doped diamond films epitaxially grown on a diamond shows a remarkably slow energy-relaxation at low temperatures. The electron-phonon cooling time varies from 400 ns to 700 ns over the temperature range 2.2 K to 1.7 K [3]. In superconducting materials such as Al and TiN, traditionally used in KIDs, the e-ph cooling times at 1.7 K correspond to ~20 ns [4] and ~100 ns [5], correspondingly. Such a noticeable slow e-ph relaxation in boron-doped diamond, in combination with a low value of carrier density (~10 21 cm -3 ) in comparison with typical metals (~10 23 cm -3 ) and a high normal state resistivity (~1500 μΩ·cm) confirms a potential of superconducting diamond for superconducting bolometers and resonator detectors. However, the price and the small substrate growth are of single crystal diamond limit practical applications of homoepitaxial diamond films. As an alternative way with more convenient technology, one can employ heteroepitaxial diamond films grown on large-size Si substrates. Here we report about measurements of e-ph cooling times in superconducting diamond grown on silicon substrate and discuss our expectations about the applicability of boron-doped diamond films to superconducting detectors. Our estimation of limit value of noise-equivalent power (NEP) and the energy resolution of bolometer made from superconducting diamond is order 10 -17 W/Hz 1/2 at 2 K and the energy resolution is of 0.1 eV that corresponds to counting single-photon up to 15 um. The estimation was obtained by using the film thickness of 70 nm and ρ ~ 1500 μΩ·cm, and the planar dimensions that are chosen to couple bolometer with 75 Ω log-spiral antenna. Although the value of NEP is far yet from what might like to have for certain astronomical applications, we believe that it can be improved by a suitable fabrication process. Also the direct detectors, based on superconducting diamond, will offer low noise performance at about 2 K, a temperature provided by inexpensive close-cycle refrigerators, which provides another practical advantage of development and application of these devices. [1] P.K. Day, et. al, Nature, 425, 817, 2003. [2] J. Wei, et al, Nature Nanotech., 3, 496, 2008. [3] A. Kardakova, et al, Phys. Rev. B, 93, 064506, 2016. [4] P. Santhanam and D. Prober, Phys. Rev. B, 29, 3733, 1984 [5] A. Kardakova, et al, Appl. Phys. Lett, vol. 103, p. 252602, 2013.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1173  
Permanent link to this record
 

 
Author Bueno, J.; Coumou, P. C. J. J.; Zheng, G.; de Visser, P. J.; Klapwijk, T. M.; Driessen, E. F. C.; Doyle, S.; Baselmans, J. J. A openurl 
  Title Anomalous response of superconducting titanium nitride resonators to terahertz radiation Type Journal Article
  Year 2014 Publication Appl. Phys. Lett. Abbreviated Journal  
  Volume 105 Issue Pages 192601 (1 to 5)  
  Keywords KID, TiN, NEP, disordered superconductors, inhomogeneous state  
  Abstract We present an experimental study of kinetic inductance detectors (KIDs) fabricated of atomic layer deposited TiN films and characterized at radiation frequencies of 350 GHz. The responsivity to radiation is measured and found to increase with the increase in radiation powers, opposite to what is expected from theory and observed for hybrid niobium titanium nitride/aluminium (NbTiN/Al) and all-aluminium (all-Al) KIDs. The noise is found to be independent of the level of the radiation power. The noise equivalent power improves with higher radiation powers, also opposite to what is observed and well understood for hybrid NbTiN/Al and all-Al KIDs. We suggest that an inhomogeneous state of these disordered superconductors should be used to explain these observations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1068  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: