|   | 
Details
   web
Records
Author Pentin, I. V.; Smirnov, A. V.; Ryabchun, S. A.; Ozhegov, R. V.; Gol’tsman, G. N.; Vaks, V. L.; Pripolzin, S. I.; Pavel’ev, D. G.; Koshurinov, Y. I.; Ivanov, A. S.
Title Semiconducting superlattice as a solid-state terahertz local oscillator for NbN hot-electron bolometer mixers Type Journal Article
Year 2012 Publication Tech. Phys. Abbreviated Journal Tech. Phys.
Volume 57 Issue 7 Pages 971-974
Keywords semiconducting superlattice frequency multiplier, NbN HEB mixers
Abstract We present the results of our studies of the semiconducting superlattice (SSL) frequency multiplier and its application as part of the solid state local oscillator (LO) in the terahertz heterodyne receiver based on a NbN hot-electron bolometer (HEB) mixer. We show that the SSL output power level increases as the ambient temperature is lowered to 4.2 K, the standard HEB operation temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-7842 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1378
Permanent link to this record
 

 
Author Shangina, E. L.; Smirnov, K. V.; Morozov, D. V.; Kovalyuk, V. V.; Gol’tsman, G. N.; Verevkin, A. A.; Toropov, A. I.
Title Frequency bandwidth and conversion loss of a semiconductor heterodyne receiver with phonon cooling of two-dimensional electrons Type Journal Article
Year 2010 Publication Semicond. Abbreviated Journal Semicond.
Volume 44 Issue 11 Pages 1427-1429
Keywords 2DEG, AlGaAs/GaAs heterostructures mixers
Abstract The temperature and concentration dependences of the frequency bandwidth of terahertz heterodyne AlGaAs/GaAs detectors based on hot electron phenomena with phonon cooling of two-dimensional electrons have been measured by submillimeter spectroscopy with a high time resolution. At a temperature of 4.2 K, the frequency bandwidth at a level of 3 dB (f 3 dB) is varied from 150 to 250 MHz with a change in the concentration n s according to the power law f 3dB ∝ n −0.5 s due to the dominant contribution of piezoelectric phonon scattering. The minimum conversion loss of the semiconductor heterodyne detector is obtained in structures with a high carrier mobility (μ > 3 × 105 cm2 V−1 s−1 at 4.2 K).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-7826 ISBN Medium
Area Expedition Conference
Notes Полоса и потери преобразования полупроводникового смесителя с фононным каналом охлаждения двумерных электронов Approved no
Call Number Serial 1216
Permanent link to this record
 

 
Author Tuchak, A. N.; Gol’tsman, G. N.; Kitaeva, G. K.; Penin, A. N.; Seliverstov, S. V.; Finkel, M. I.; Shepelev, A. V.; Yakunin, P. V.
Title Generation of nanosecond terahertz pulses by the optical rectification method Type Journal Article
Year 2012 Publication JETP Lett. Abbreviated Journal JETP Lett.
Volume 96 Issue 2 Pages 94-97
Keywords optical rectification, lithium niobate crystal
Abstract The possibility of the generation of quasi-cw terahertz radiation by the optical rectification method for broad-band Fourier unlimited nanosecond laser pulses has been experimentally demonstrated. The broadband radiation of a LiF dye-center laser is used as a pump source of a nonlinear optical oscillator. The energy efficiency of terahertz optical frequency conversion in a periodically polarized lithium niobate crystal is 4 × 10−9 at a pump power density of 7 MW/cm2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-3640 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1377
Permanent link to this record
 

 
Author Smirnov, K. V.; Ptitsina, N. G.; Vakhtomin, Y. B.; Verevkin, A. A.; Gol’tsman, G. N.; Gershenzon, E. M.
Title Energy relaxation of two-dimensional electrons in the quantum Hall effect regime Type Journal Article
Year 2000 Publication JETP Lett. Abbreviated Journal JETP Lett.
Volume 71 Issue 1 Pages 31-34
Keywords 2DEG, GaAs/AlGaAs heterostructures
Abstract The mm-wave spectroscopy with high temporal resolution is used to measure the energy relaxation times τe of 2D electrons in GaAs/AlGaAs heterostructures in magnetic fields B=0–4 T under quasi-equilibrium conditions at T=4.2 K. With increasing B, a considerable increase in τe from 0.9 to 25 ns is observed. For high B and low values of the filling factor ν, the energy relaxation rate τ −1e oscillates. The depth of these oscillations and the positions of maxima depend on the filling factor ν. For ν>5, the relaxation rate τ −1e is maximum when the Fermi level lies in the region of the localized states between the Landau levels. For lower values of ν, the relaxation rate is maximum at half-integer values of τ −1e when the Fermi level is coincident with the Landau level. The characteristic features of the dependence τ −1e (B) are explained by different contributions of the intralevel and interlevel electron-phonon transitions to the process of the energy relaxation of 2D electrons.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-3640 ISBN Medium
Area Expedition Conference
Notes http://jetpletters.ru/ps/899/article_13838.shtml (“Энергетическая релаксация двумерных электронов в области квантового эффекта Холла”) Approved no
Call Number Serial 1559
Permanent link to this record
 

 
Author Verevkin, A. A.; Ptitsina, N. G.; Smirnov, K. V.; Gol’tsman, G. N.; Gershenzon, E. M.; Ingvesson, K. S.
Title Direct measurements of energy relaxation times on an AlGaAs/GaAs heterointerface in the range 4.2–50 K Type Journal Article
Year 1996 Publication JETP Lett. Abbreviated Journal JETP Lett.
Volume 64 Issue 5 Pages 404-409
Keywords 2DEG, AlGaAs/GaAs heterostructures
Abstract The temperature dependence of the energy relaxation time τe (T) of a two-dimensional electron gas at an AlGaAs/GaAs heterointerface is measured under quasiequilibrium conditions in the region of the transition from scattering by acoustic phonons to scattering with the participation of optical phonons. The temperature interval of constant τe, where scattering by the deformation potential predominates, is determined. In the preceding, low-temperature region, where piezoacoustic and deformation-potential-induced scattering processes coexist, τ e decreases slowly with increasing temperature. Optical phonons start to participate in the scattering processes at T∼25 K (the characteristic phonon lifetime was equal to τLOτ4.5 ps). The energy losses calculated from the τe data in a model with an effective nonequilibrium electron temperature agree with the published data obtained under strong heating conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-3640 ISBN Medium
Area Expedition Conference
Notes http://jetpletters.ru/ps/981/article_14955.shtml (“Прямые измерения времен энергетической релаксации на гетерогранице AlGaAs/GaAs в диапазоне 4.2 – 50 К”) Approved no
Call Number Serial 1608
Permanent link to this record
 

 
Author Gol’tsman, G. N.; Smirnov, K. V.
Title Electron-phonon interaction in a two-dimensional electron gas of semiconductor heterostructures at low temperatures Type Journal Article
Year 2001 Publication Jetp Lett. Abbreviated Journal Jetp Lett.
Volume 74 Issue 9 Pages 474-479
Keywords 2DEG, AlGaAs/GaAs heterostructures
Abstract Theoretical and experimental works devoted to studying electron-phonon interaction in the two-dimensional electron gas of semiconductor heterostructures at low temperatures in the case of strong heating in an electric field under quasi-equilibrium conditions and in a quantizing magnetic field perpendicular to the 2D layer are considered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-3640 ISBN Medium
Area Expedition Conference
Notes По итогам проектов российского фонда фундаментальных исследований. Проект РФФИ # 98-02-16897 Электрон-фононное взаимодействие в двумерном электронном газе полупроводниковых гетероструктур при низких температурах Approved no
Call Number Serial 1541
Permanent link to this record
 

 
Author Men’shchikov, E. M.; Gogidze, I. G.; Sergeev, A. V.; Elant’ev, A. I.; Kuminov, P. B.; Gol’tsman, G. N.; Gershenzon, E. M.
Title Superconducting fast detector based on the nonequilibrium inductance response of a film of niobium nitride Type Journal Article
Year 1997 Publication Tech. Phys. Lett. Abbreviated Journal Tech. Phys. Lett.
Volume 23 Issue 6 Pages 486-488
Keywords NbN KID
Abstract A new type of fast detector is proposed, whose operation is based on the variation of the kinetic inductance of a superconducting film caused by nonequilibrium quasiparticles created by the electromagnetic radiation. The speed of the detector is determined by the rate of multiplication of photo-excited quasiparticles, and is nearly independent of the temperature, being less than 1 ps for NbN. Models based on the Owen-Scalapino scheme give a good description of the experimentally determined dependence of the power-voltage sensitivity of the detector on the modulation frequency. The lifetime of the quasiparticles is determined, and it is shown that the reabsorption of nonequilibrium phonons by the condensate has a substantial effect even in ultrathin NbN films 5 nm thick, and results in the maximum possible quantum yield. A low concentration of equilibrium quasiparticles and a high quantum yield result in a detectivity D*=1012 W−1·Hz1/2 at a temperature T=4.2 K and D*=1016 W−1·cm· Hz1/2 at T=1.6 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-7850 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1593
Permanent link to this record
 

 
Author Verevkin, A. A.; Ptitsina, N. G.; Smirnov, K. V.; Voronov, B. M.; Gol’tsman, G. N.; Gershenson, E. M.; Yngvesson, K. S.
Title Multiple Andreev reflection in hybrid AlGaAs/GaAs structures with superconducting NbN contacts Type Journal Article
Year 1999 Publication Semicond. Abbreviated Journal Semicond.
Volume 33 Issue 5 Pages 551-554
Keywords 2DEG, AlGaAs/GaAs heterostructures
Abstract The conductivity of hybrid microstructures with superconducting contacts made of niobium nitride to a semiconductor with a two-dimensional electron gas in a AlGaAs/GaAs heterostructure has been investigated. Distinctive features of the behavior of the conductivity indicate the presence of multiple Andreev reflection at scattering centers in the normal region near the superconductor-semiconductor boundary.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-7826 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1571
Permanent link to this record
 

 
Author Tikhonov, V. V.; Polyakova, O. N.; Gol’tsman, G. N.; Dzardanov, A. L.; Boyarskiy, D. A.
Title Determination of dielectric properties of ore minerals in the microwave band Type Journal Article
Year 2008 Publication Radiophys. Quant. Electron. Abbreviated Journal Radiophys. Quant. Electron.
Volume 51 Issue 12 Pages 966-974
Keywords ore complex permittivity, chalcopyrite, magnetite, sphalerite, labradorite
Abstract We consider a method for determining the complex dielectric permittivity of ore and nonmetal minerals in the microwave band of electromagnetic radiation. The results of measuring the reflectivity and transmittivity of chalcopyrite, magnetite, sphalerite, and labradorite samples in the frequency range 77–300 GHz are presented. A method for calculation of the complex dielectric permittivity of minerals on the basis of the obtained experimental data is proposed. The approximation formulas for calculation of the complex dielectric permittivity of the studied minerals are given.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0033-8443 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1404
Permanent link to this record
 

 
Author Ozhegov, R. V.; Gorshkov, K. N.; Smirnov, K. V.; Gol’tsman, G. N.; Filippenko, L. V.; Koshelets, V. P.
Title Terahertz imaging system based on superconducting integrated receiver Type Conference Article
Year 2010 Publication Proc. 2-nd Int. Conf. Terahertz and Microwave radiation: Generation, Detection and Applications Abbreviated Journal Proc. 2-nd Int. Conf. Terahertz and Microwave radiation: Generation, Detection and Applications
Volume Issue Pages 20-22
Keywords SIS mixer, SIR
Abstract The development of terahertz imaging instruments for security systems is on the cutting edge of terahertz technology. We are developing a THz imaging system based on a superconducting integrated receiver (SIR). An SIR is a new type of heterodyne receiver based on an SIS mixer integrated with a flux-flow oscillator (FFO) and a harmonic mixer which is used for phase-locking the FFO. Developing an array of SIRs would allow obtaining amplitude and phase characteristics of incident radiation in the plane of the receiver. Employing an SIR in an imaging system means building an entirely new instrument with many advantages compare to traditional systems: i) high temperature resolution, comparable to the best results for incoherent receivers; ii) high spectral resolution allowing spectral analysis of various substances; iii) the local oscillator frequency can be varied to obtain images at different frequencies, effectively providing “color” images; iv) since a heterodyne receiver preserves the phase of the radiation, it is possible to construct 3D images. The paper presents a prototype THz imaging system using an 1 pixel SIR. We have studied the dependence of the noise equivalent temperature difference (NETD) on the integration time and also possible ways of achieving best possible sensitivity. An NETD of 13 mK was obtained with an integration time of 1 sec a detection bandwidth of 4 GHz at a local oscillator frequency of 520 GHz. An important advantage of an FFO is its wide operation range: 300-700 GHz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number ozhegov2010terahertz Serial 1397
Permanent link to this record
 

 
Author Semenov, A. D.; Gol’tsman, G. N.
Title Nonthermal mixing mechanism in a diffusion-cooled hot-electron detector Type Journal Article
Year 2000 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 87 Issue 1 Pages 502-510
Keywords NbN HEB mixers, nonthermal
Abstract We present an analysis of a diffusion-cooled hot-electron detector fabricated from clean superconducting material with low transition temperature. The distinctive feature of a clean material, i.e., material with large electron mean free path, is a relatively weak inelastic electron scattering that is not sufficient for the establishment of an elevated thermodynamic electron temperature when the detector is subjected to irradiation. We propose an athermal model of a diffusion-cooled detector that relies on suppression of the superconducting energy gap by the actual dynamic distribution of excess quasiparticles. The resistive state of the device is caused by the electric field penetrating into the superconducting bridge from metal contacts. The dependence of the penetration length on the energy gap delivers the detection mechanism. The sources of the electric noise are equilibrium fluctuations of the number of thermal quasiparticles and frequency dependent shot noise. Using material parameters typical for A1, we evaluate performance of the device in the heterodyne regime at terahertz frequencies. Estimates show that the mixer may have a noise temperature of a few quantum limits and a bandwidth of a few tens of GHz, while the required local oscillator power is in the μW range due to ineffective suppression of the energy gap by quasiparticles with high energies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1558
Permanent link to this record
 

 
Author Rasulova, G. K.; Brunkov, P. N.; Pentin, I. V.; Egorov, A. Y.; Knyazev, D. A.; Andrianov, A. V.; Zakhar’in, A. O.; Konnikov, S. G.; Gol’tsman, G. N.
Title A weakly coupled semiconductor superlattice as a potential for a radio frequency modulated terahertz light emitter Type Journal Article
Year 2012 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 100 Issue 13 Pages 131104 (1 to 4)
Keywords semiconductor superlattice
Abstract The bolometer response to THz radiation from a weakly coupled GaAs/AlGaAs superlattice biased in the self-oscillations regime has been observed. The bolometer signal is modulated with the frequency equal to the fundamental frequency of superlattice self-oscillations. The frequency spectrum of the bolometer signal contains higher harmonics whose frequency is a multiple of fundamental frequency of self-oscillations.

This work was supported by State Contracts Nos. 16.740.11.0044 and 16.552.11.7002 of Ministry of Education and Science of the Russian Federation. Structural characterization was made on the equipment of the Joint Research Centre «Material science and characterization in advanced technology» (Ioffe Institute, St. Petersburg, Russia).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1379
Permanent link to this record
 

 
Author Karasik, B. S.; Zorin, M. A.; Milostnaya, I. I.; Elantev, A. I.; Gol’tsman, G. N.; Gershenzon, E. M.
Title Subnanosecond switching of YBaCuO films between superconducting and normal states induced by current pulse Type Journal Article
Year 1995 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 77 Issue 8 Pages 4064-4070
Keywords YBCO HTS switches
Abstract A study is reported of the current switching in high‐quality YBaCuO films deposited onto NdGaO3 and ZrO2 substrates between superconducting (S) and normal (N) states. The films 60–120 nm thick prepared by laser ablation were structured into single strips between gold contacts. The time dependence of the resistance after application of the voltage step to the film was monitored. Experiment performed within certain ranges of voltage amplitudes and temperatures has shown the occurrence of the fast stage (shorter than 400 ps) both in S‐N and N‐S transitions. A fraction of the film resistance changing within this stage in the S‐N transition increases with the current amplitude. A subnanosecond N‐S stage becomes more pronounced for shorter pulses. The fast switching is followed by the much slower change of resistance. The mechanism of switching is discussed in terms of the hot‐electron phenomena in YBaCuO. The contributions of other thermal processes (e.g., a phonon escape from the film, a heat diffusion in the film and substrate, a resistive domain formation) in the subsequent stage of the resistance dynamic have been also discussed. The basic limiting characteristics (average dissipated power, energy needed for switching, maximum repetition rate) of a picosecond switch which is proposed to be developed are estimated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1623
Permanent link to this record
 

 
Author Danerud, M.; Winkler, D.; Lindgren, M.; Zorin, M.; Trifonov, V.; Karasik, B. S.; Gol’tsman, G. N.; Gershenzon, E. M.
Title Nonequilibrium and bolometric photoresponse in patterned YBa2Cu3O7−δ thin films Type Journal Article
Year 1994 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 76 Issue 3 Pages 1902-1909
Keywords YBCO HTS HEB detector, nonequilibrium response
Abstract Epitaxial laser deposited YBa2Cu3O7−δ films of ∼50 nm thickness were patterned into detectors consisting of ten parallel 1 μm wide strips in order to study nonequilibrium and bolometric effects. Typically, the patterned samples had critical temperatures around 86 K, transition widths around 2 K and critical current densities above 1×106A/cm2 at 77 K. Pulsed laser measurements at 0.8 μm wavelength (17 ps full width at half maximum) showed a ∼30 ps response, attributed to electron heating, followed by a slower bolometric decay. Amplitude modulation in the band fmod=100 kHz–10 GHz of a laser with wavelength λ=0.8 μm showed two different thermal relaxations in the photoresponse. Phonon escape from the film (∼3 ns) is the limiting process, followed by heat diffusion in the substrate. Similar relaxations were also seen for λ=10.6 μm. The photoresponse measurements were made with the film in the resistive state and extended into the normal state. These states were created by supercritical bias currents. Measurements between 75 and 95 K (i.e., from below to above Tc) showed that the photoresponse was proportional to dR/dT for fmod=1 MHz and 4 GHz. The fast response is limited by the electron‐phonon scattering time, estimated to 1.8 ps from experimental data. The responsivity both at 0.8 and 10.6 μm wavelength was ∼1.2 V/W at fmod=1 GHz and the noise equivalent power was calculated to 1.5×10−9 WHz−1/2 for the fast response.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1637
Permanent link to this record
 

 
Author Nebosis, R. S.; Steinke, R.; Lang, P. T.; Schatz, W.; Heusinger, M. A.; Renk, K. F.; Gol’tsman, G. N.; Karasik, B. S.; Semenov, A. D.; Gershenzon, E. M.
Title Picosecond YBa2Cu3O7−δdetector for far‐infrared radiation Type Journal Article
Year 1992 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 72 Issue 11 Pages 5496-5499
Keywords YBCO HTS detectors
Abstract We report on a picosecond YBa2Cu3O7−δ detector for far‐infrared radiation. The detector, consisting of a current carrying structure cooled to liquid‐nitrogen temperature, was studied by use of ultrashort laser pulses from an optically pumped far‐infrared laser in the frequency range from 25 to 215 cm−1. We found that the sensitivity (1 mV/W) was almost constant in this frequency range. We estimated a noise equivalent power of less than 5×10−7 W Hz−1/2. Taking into account the results of a mixing experiment (in the frequency range from 4 to 30 cm−1) we suggest that the response time of the detector was few picoseconds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1668
Permanent link to this record