toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Voronov, B. M.; Gershenzon, E. M.; Gol'tsman, G. N.; Gubkina, T. O.; Semash, V. D. url  openurl
  Title Superconductive properties of ultrathin NbN films on different substrates Type Journal Article
  Year 1994 Publication Sverkhprovodimost': Fizika, Khimiya, Tekhnika Abbreviated Journal Sverkhprovodimost': Fizika, Khimiya, Tekhnika  
  Volume 7 Issue 6 Pages 1097-1102  
  Keywords NbN films  
  Abstract A study was made on dependence of surface resistance, critical temperature and width of superconducting transition on application temperature and thickness of NbN films, which varied within the range of 3-10 nm. Plates of sapphire, fused and monocrystalline quartz, MgO, as well as Si and silicon oxide were used as substrates. NbN films with 160 μθ·cm specific resistance and 16.5 K (Tc) critical temperature were obtained on sapphire substrates. Intensive growth of ΔTc was noted for films, applied on fused quartz, with increase of precipitation temperature. This is explained by occurrence of high tensile stresses in NbN films, caused by sufficient difference of thermal coefficients of expansion of NbN and quartz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0131-5366 ISBN Medium  
  Area Expedition Conference  
  Notes Сверхпроводниковые свойства ультратонких пленок NbN на различных подложках Approved no  
  Call Number Serial 1631  
Permanent link to this record
 

 
Author Budyanskij, M. Ya.; Sejdman, L. A.; Voronov, B. M.; Gubkina, T. O. url  openurl
  Title Increase of reproducibility in production of superconducting thin films of niobium nitride Type Journal Article
  Year 1992 Publication Sverkhprovodimost': Fizika, Khimiya, Tekhnika Abbreviated Journal Sverkhprovodimost': Fizika, Khimiya, Tekhnika  
  Volume 5 Issue 10 Pages 1950-1954  
  Keywords NbN films  
  Abstract Technique to control the composition of gas medium in the reactive magnetron discharge and the composition of the deposited films of niobium nitride using electrical parameters of discharge only, in particular, by δU = Up – Uar value at contant stabilized discharge current is described. Technique to select optimal condition for deposition of niobium nitride films when the films have composition meeting chemical formula, is suggested. Thin films of niobium nitride with up to 7 nm thickness and with rather high temperature of transition into superconducting state Tk > 10 K) and with low width of transition (δ < 0.6 K), are obtained. It is determined, that substrate material and dielectric sublayer do not affect. Tk value, while difference in coefficients of thermal expansion of substrate and of film affects δTk value.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0131-5366 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1675  
Permanent link to this record
 

 
Author Voronov, B. M.; Gershenzon, E. M.; Gol'tsman, G. N.; Gogidze, I. G.; Gusev, Yu. P.; Zorin, M. A.; Sejdman, L. A.; Semenov, A. D. url  openurl
  Title Picosecond range detector base on superconducting niobium nitride film sensitive to radiation in spectral range from millimeter waves up to visible light Type Journal Article
  Year 1992 Publication Sverkhprovodimost': Fizika, Khimiya, Tekhnika Abbreviated Journal Sverkhprovodimost': Fizika, Khimiya, Tekhnika  
  Volume 5 Issue 5 Pages 955-960  
  Keywords NbN HEB detectors  
  Abstract Fast-operating picosecond detector of electromagnetical radiation is developed on the basis of fine superconducting film of niobium nitride with high sensitivity within spectral range from millimetric waves up to visible light. Detector sensitive element represents structure covering narrow parallel strips with micron sizes included in the rupture of microstrip line. Detecting ability of the detector and time constant measured using amplitude-simulated radiation of reverse wave tubes and pulse radiation of picosecond gas and solid-body lasers, constitute D*≅1010 W-1·cm·Hz-1/2 and τ≤5 ps respectively, at 10 K temperature. The expected value of time constant of the detector at 10 K obtained via extrapolation of directly measured dependence that is, τ ∝ τ-1, constitutes 20 ps. Experimental data demonstrate that detection mechanism is linked with electron heating effect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0131-5366 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1670  
Permanent link to this record
 

 
Author Schwaab, G.W.; Sirmain, G.; Schubert, J.; Hubers, H.-W.; Gol'tsman, G.; Cherednichenko, S.; Verevkin, A.; Voronov, B.; Gershenzon, E. url  doi
openurl 
  Title Investigation of NbN phonon-cooled HEB mixers at 2.5 THz Type Journal Article
  Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 9 Issue 2 Pages 4233-4236  
  Keywords NbN HEB mixers  
  Abstract The development of superconducting hot electron bolometric (HEB) mixers has been a big step forward in the direction of quantum noise limited mixer performance at THz frequencies. Such mixers are crucial for the upcoming generation of airborne and spaceborne THz heterodyne receivers. In this paper we report on new results on a phonon-cooled NbN HEB mixer using e-beam lithography. The superconducting film is 3 nm thick. The mixer is 0.2 μm long and 1.5 μm wide and it is integrated in a spiral antenna on a Si substrate. The device is quasi-optically coupled through a Si lens and a dielectric beam combiner to the radiation of an optically pumped FIR ring gas laser cavity. The performance of the mixer at different THz frequencies from 0.69 to 2.55 THz with an emphasis on 2.52 THz is demonstrated. At 2.52 THz minimum DSB noise temperatures of 4200 K have been achieved at an IF of 1.5 GHz and a bandwidth of 40 MHz with the mixer mounted in a cryostat and a 0.8 m long signal path in air.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 550  
Permanent link to this record
 

 
Author Jiang, L.; Antipov, S. V.; Voronov, B. M.; Gol'tsman, G. N.; Zhang, W.; Li, N.; Lin, Z. H.; Yao, Q. J.; Miao, W.; Shi, S. C.; Svechnikov, S. I.; Vakhtomin, Y. B. url  doi
openurl 
  Title Characterization of the performance of a quasi-optical NbN superconducting HEB mixer Type Journal Article
  Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 17 Issue 2 Pages 395-398  
  Keywords NbN HEB mixers, noise temperature  
  Abstract In this paper we focus mainly on the investigation of the performance of a quasi-optical (planar log-spiral antenna) phonon-cooled NbN superconducting hot electron bolometer (HEB) mixer, which is cryogenically cooled by a close-cycled 4-K cryocooler, at 500 and 850 GHz frequency bands. The mixer's noise performance, stability of IF output power, and local oscillator (LO) power requirement are characterized for three NbN superconducting HEB devices of different sizes. The transmission characteristics of Mylar and Zitex films with incidence waves of an elliptical polarization are also examined by measuring the mixer's noise temperature. The lowest receiver noise temperatures (with no corrections) of 750 and 1100 K are measured at 500 and 850 GHz, respectively. Experimental results also demonstrate that the bigger the HEB device is, the higher the stability of IF output power becomes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1429  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: