|   | 
Details
   web
Records
Author Smirnov, K.; Korneev, A.; Minaeva, O.; Divochij, A.; Rubtsova, I.; Antipov, A.; Ryabchun, S.; Okunev, O.; Milostnaya, I.; Chulkova, G.; Voronov, B.; Kaurova, N.; Seleznev, V.; Korotetskaya, Y.; Gol’tsman, G.
Title Superconducting single-photon detector for near- and middle IR wavelength range Type Conference Article
Year 2006 Publication Proc. 16th Int. Crimean Microwave and Telecommunication Technology Abbreviated Journal Proc. 16th Int. Crimean Microwave and Telecommunication Technology
Volume (up) 2 Issue Pages 684-685
Keywords NbN SSPD, SNSPD
Abstract Presented in this paper are the results of research of NbN-film superconducting single-photon detector. At 2 K temperature, quantum efficiency in the visible light (0.56 mum) reaches 30-40 %. With the wavelength increase quantum efficiency decreases and comes to  20% at 1.55 mum and  0.02% at 5.6 mum. Minimum dark counts rate is 2times10-4s-1. The jitter of detector is 35 ps. The detector was successfully implemented for integrated circuits non-invasive optical testing. It is also perspective for quantum cryptography systems
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1447
Permanent link to this record
 

 
Author Chulkova, G.; Milostnaya, I.; Korneev, A.; Minaeva, O.; Rubtsova, I.; Voronov, B.; Okunev, O.; Smirnov, K.; Gol’tsman, G.; Kitaygorsky, J.; Cross, A.; Pearlman, A.; Sobolewski, R.; Slysz, W.
Title Superconducting nanostructures for counting of single photons in the infrared range Type Conference Article
Year 2005 Publication Proc. 2-nd CAOL Abbreviated Journal Proc. 2-nd CAOL
Volume (up) 2 Issue Pages 100-103
Keywords SSPD, SNSPD
Abstract We present our studies on ultrafast superconducting single-photon detectors (SSPDs) based on ultrathin NbN nanostructures. Our SSPDs are patterned by electron beam lithography from 4-nm thick NbN film into meander-shaped strips covering square area of 10/spl times/10 /spl mu/m/sup 2/. The advances in the fabrication technology allowed us to produce highly uniform 100-120-nm-wide strips with meander filling factor close to 0.6. The detectors exploit a combined detection mechanism, where upon a single-photon absorption, an avalanche of excited hot electrons and the biasing supercurrent, jointly produce a picosecond voltage transient response across the superconducting nanostrip. The SSPDs are typically operated at 4.2 K, but they have shown that their sensitivity in the infrared radiation range can be significantly improved by lowering the operating temperature from 4.2 K to 2 K. When operated at 2 K, the SSPD quantum efficiency (QE) for visible light photons reaches 30-40%, which is the saturation value limited by optical absorption of our 4-nm-thick NbN film. For 1.55 /spl mu/m photons, QE was /spl sim/20% and decreases exponentially with the increase of the optical wavelength, but even at the wavelength of 6 /spl mu/m the detector remains sensitive to single photons and exhibits QE of about 10/sup -2/%. The dark (false) count rate at 2 K is as low as 2 /spl times/ 10/sup -4/ s/sup -1/, what makes our detector essentially a background-limited sensor. The very low dark-count rate results in the noise equivalent power (NEP) as low as 10/sup -18/ WHz/sup -1/2/ for the mid-infrared range (6 /spl mu/m). Further improvement of the SSPD performance in the mid-infrared range can be obtained by substituting NbN for the other, lower-T/sub c/ superconductors with the narrow superconducting gap and low quasiparticle diffusivity. The use of such materials will shift the cutoff wavelength towards the values even longer than 6 /spl mu/m.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Second International Conference on Advanced Optoelectronics and Lasers
Notes Approved no
Call Number Serial 1461
Permanent link to this record
 

 
Author Gol'tsman, G. N.; Korneev, A.; Rubtsova, I.; Milostnaya, I.; Chulkova, G.; Minaeva, O.; Smirnov, K.; Voronov, B.; Słysz, W.; Pearlman, A.; Verevkin, A.; Sobolewski, R.
Title Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications Type Journal Article
Year 2005 Publication Phys. Stat. Sol. (C) Abbreviated Journal Phys. Stat. Sol. (C)
Volume (up) 2 Issue 5 Pages 1480-1488
Keywords NbN SSPD, SNSPD
Abstract We present our progress on the research and development of NbN superconducting single‐photon detectors (SSPD's) for ultrafast counting of near‐infrared photons for secure quantum communications. Our SSPD's operate in the quantum detection mode based on the photon‐induced hotspot formation and subsequent development of a transient resistive barrier across an ultrathin and submicron‐width superconducting stripe. The devices are fabricated from 4‐nm‐thick NbN films and kept in the 4.2‐ to 2‐K temperature range. The detector experimental quantum efficiency in the photon‐counting mode reaches above 40% for the visible light and up to 30% in the 1.3‐ to 1.55‐µm wavelength range with dark counts below 0.01 per second. The experimental real‐time counting rate is above 2 GHz and is limited by our readout electronics. The SSPD's timing jitter is below 18 ps, and the best‐measured value of the noise‐equivalent power (NEP) is 5 × 10–21 W/Hz1/2 at 1.3 µm. In terms of quantum efficiency, timing jitter, and maximum counting rate, our NbN SSPD's significantly outperform semiconductor avalanche photodiodes and photomultipliers in the 1.3‐ to 1.55‐µm range.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1610-1634 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1479
Permanent link to this record
 

 
Author Pernice, W. H. P.; Schuck, C.; Minaeva, O.; Li, M.; Goltsman, G. N.; Sergienko, A. V.; Tang, H. X.
Title High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits Type Journal Article
Year 2012 Publication Nat. Commun. Abbreviated Journal Nat. Commun.
Volume (up) 3 Issue Pages 1325 (1 to 10)
Keywords waveguide SSPD
Abstract Ultrafast, high-efficiency single-photon detectors are among the most sought-after elements in modern quantum optics and quantum communication. However, imperfect modal matching and finite photon absorption rates have usually limited their maximum attainable detection efficiency. Here we demonstrate superconducting nanowire detectors atop nanophotonic waveguides, which enable a drastic increase of the absorption length for incoming photons. This allows us to achieve high on-chip single-photon detection efficiency up to 91% at telecom wavelengths, repeatable across several fabricated chips. We also observe remarkably low dark count rates without significant compromise of the on-chip detection efficiency. The detectors are fully embedded in scalable silicon photonic circuits and provide ultrashort timing jitter of 18 ps. Exploiting this high temporal resolution, we demonstrate ballistic photon transport in silicon ring resonators. Our direct implementation of a high-performance single-photon detector on chip overcomes a major barrier in integrated quantum photonics.
Address Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Medium
Area Expedition Conference
Notes PMID:23271658; PMCID:PMC3535416 Approved no
Call Number Serial 1375
Permanent link to this record
 

 
Author Reiger, E.; Pan, D.; Slysz, W.; Jukna, A.; Sobolewski, R.; Dorenbos, S.; Zwiller, V.; Korneev, A.; Chulkova, G.; Milostnaya, I.; Minaeva, O.; Gol'tsman, G.; Kitaygorsky, J.
Title Spectroscopy with nanostructured superconducting single photon detectors Type Journal Article
Year 2007 Publication IEEE J. Select. Topics Quantum Electron. Abbreviated Journal IEEE J. Select. Topics Quantum Electron.
Volume (up) 13 Issue 4 Pages 934-943
Keywords SSPD, SNSPD
Abstract Superconducting single-photon detectors (SSPDs) are nanostructured devices made from ultrathin superconducting films. They are typically operated at liquid helium temperature and exhibit high detection efficiency, in combination with very low dark counts, fast response time, and extremely low timing jitter, within a broad wavelength range from ultraviolet to mid-infrared (up to 6 mu m). SSPDs are very attractive for applications such as fiber-based telecommunication, where single-photon sensitivity and high photon-counting rates are required. We review the current state-of-the-art in the SSPD research and development, and compare the SSPD performance to the best semiconducting avalanche photodiodes and other superconducting photon detectors. Furthermore, we demonstrate that SSPDs can also be successfully implemented in photon-energy-resolving experiments. Our approach is based on the fact that the size of the hotspot, a nonsuperconducting region generated upon photon absorption, is linearly dependent on the photon energy. We introduce a statistical method, where, by measuring the SSPD system detection efficiency at different bias currents, we are able to resolve the wavelength of the incident photons with a resolution of 50 nm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1077-260X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1424
Permanent link to this record