toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gol’tsman, G. N.; Kouminov, P. B.; Goghidze, I. G.; Karasik, B. S.; Gershenzon, E. M. url  doi
openurl 
  Title Nonbolometric and fast bolometric responses of YBaCuO thin films in superconducting, resistive, and normal states Type Conference Article
  Year 1994 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume (up) 2159 Issue Pages 81-86  
  Keywords YBCO HTS HEB, nonbolornetric  
  Abstract The transient voltage response in both epitaxial and granular YBaCuO thin films to 20 ps pulses of YAG:Nd laser radiation with 0.63 micrometers and 1.54 micrometers was studied. In normal and resistive states both types of films demonstrate two components: nonequilibrium picosecond component and following bolometric nanosecond. The normalized amplitudes are almost the same for all films. In superconducting state we observed a kinetic inductive response and two-component shape after integration. The normalized amplitude of the response in granular films is up to several orders of magnitude larger than in epitaxial films. We interpret the nonequilibrium response in terms of a suppression of order parameter by the excess of quasiparticles followed by the change of resistance in normal and resistive states or kinetic inductance in superconducting state. The sharp rise of inductive response in granular films is explained both by a diminishing of the crossection for current percolation through the disordered network os Josephson weak links and by a decrease of condensate density in neighboring regions.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Nahum, M.; Villegier, J.-C.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference High-Temperature Superconducting Detectors: Bolometric and Nonbolometric  
  Notes Approved no  
  Call Number Serial 1641  
Permanent link to this record
 

 
Author Karasik, B. S.; Zorin, M. A.; Milostnaya, I. I.; Elantev, A. I.; Gol’tsman, G. N.; Gershenzon, E. M. url  doi
openurl 
  Title Evidence of subnanosecond transition stage in S-N current switching of YBaCuO films Type Conference Article
  Year 1994 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume (up) 2160 Issue Pages 74-82  
  Keywords YBCO HTS switches  
  Abstract We report on a study of S-N and N-S current switching in high quality YBaCuO films deposited onto ZrO2 and NdGaO3 substrates. The films 60-120 nm thick prepared by laser ablation were structured into single strips and were provided with gold contacts. We monitored the time dependence of the resistance upon application of the voltage step on the film. Experiment performed within certain ranges of voltage amplitudes and temperatures showed the occurrence of the fast stage both in S-N (shorter than 300 ps) and N-S transition. We discuss the mechanism of switching taking into account the hot electron phenomena in YBaCuO. The contributions of various thermal processes in the subsequent stage of the resistance dynamic are also discussed. The basic limiting characteristics (average dissipated power, minimum work done for switching, maximum repetition rate) of a picosecond switch which is proposed to be developed are estimated.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Buhrman, R.A.; Clarke, J.T.; Daly, K.; Koch, R.H.; Luine, J.A.; Simon, R.W.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Superconductive Devices and Circuits  
  Notes Approved no  
  Call Number Serial 1638  
Permanent link to this record
 

 
Author Dzardanov, A.; Ekstrom, H.; Gershenzon, E.; Gol'tsman, G.; Jacobsson, S.; Karasik, B.; Kollberg, E.; Okunev, O.; Voronov, B.; Yngvesson, S. doi  openurl
  Title Hot-electron superconducting mixers for 20-500 GHz operation Type Conference Article
  Year 1994 Publication Proc. Int. Conf. on Millimeter and Submillimeter Waves and Appl. Abbreviated Journal  
  Volume (up) 2250 Issue 4D Pages 276-278  
  Keywords  
  Abstract Bolometdcmucers based on Nb and NbN superconducting thin films in the resistive state have been prepared for 20, 100 GHz and 350-500 GHz operation. The mixing mechanism is presumably of electron heating origin. Our measurements indicate that a conversion loss of about 6-8 dB can rather easily be achieved, and that the noise is reasonably low. The requirements on the operation mode and on the film parameters in order to obtain small conversion losses or even gain are discussed. For NbN films the availability of nearly 1 GHz IF bandwidth is experimentally demonstrated. NbN hot-electron mucers combined with slot-line tapered antenna on Si membrane or with double-dipole antenna on SiO^ substrate have been fabricated. The devices we study are considered to be very promising for use in heterodyne receivers from microwaves to terahertz frequencies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ phisix @ Serial 981  
Permanent link to this record
 

 
Author Yngvesson, K. S.; Gerecht, E.; Musante, C. F.; Zhuang, Y.; Ji, M.; Goyette, T. M.; Dickinson, J. C.; Waldman, J.; Yagoubov, P. A.; Gol’tsman, G. N.; Voronov, B. M.; Gershenzon, E. M. url  doi
openurl 
  Title Low-noise HEB heterodyne receivers and focal plane arrays for the THz regime using NbN Type Conference Article
  Year 1999 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume (up) 3795 Issue Pages 357-368  
  Keywords NbN HEB mixers  
  Abstract We have developed prototype HEB receivers using thin film superconducting NbN devices deposited on silicon substrates. The devices are quasi-optically coupled through a silicon lens and a self-complementary log-specific toothed antenna. We measured DSB receiver noise temperatures of 500 K (13 X hf/2k) at 1.56 THz and 1,100 K (20 X hf/2k) at 2.24 THz. Noise temperatures are expected to fall further as devices and quasi-optical coupling methods are being optimized. The measured 3 dB IF conversion gain bandwidth for one device was 3 GHz, and it is estimated that the bandwidth over which the receiver noise temperature is within 3 dB of its minimum value is 6.5 GHz which is sufficient for a number of practical applications. We will discuss our latest results and give a detailed description of our prototype setup and experiments. We will also discuss our plans for developing focal plane arrays with tens of Hot Electron Bolometric mixer elements on a single silicon substrate which will make real time imaging systems in the THz region feasible.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Hwu, R.J.; Wu, K.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Terahertz and Gigahertz Photonics  
  Notes Approved no  
  Call Number Serial 1561  
Permanent link to this record
 

 
Author Huebers, H.-W.; Schubert, J.; Semenov, A.; Gol’tsman, G. N.; Voronov, B. M.; Gershenzon, E. M.; Schwaab, G. W. url  doi
openurl 
  Title NbN phonon-cooled hot-electron bolometer as a mixer for THz heterodyne receivers Type Conference Article
  Year 1999 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume (up) 3828 Issue Pages 410-416  
  Keywords NbN HEB mixers  
  Abstract We have investigated a phonon-cooled NbN hot electron bolometric (HEB) mixer in the frequency range from 0.7 THz to 5.2 THz. The device was a 3.5 nm thin film with an in- plane dimension of 1.7 X 0.2 micrometers 2 integrated in a complementary logarithmic spiral antenna. The measured DSB receiver noise temperatures are 1500 K, 2200 K, 2600 K, 2900 K, 4000 K, 5600 K and 8800 K. The sensitivity fluctuation, the long term stability, and the antenna pattern were measured and the suitability of the mixer for a practical heterodyne receiver is discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Spie Place of Publication Editor Chamberlain, J.M.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Terahertz Spectroscopy and Applications II  
  Notes Approved no  
  Call Number Serial 1477  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: