toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Tol, J. van; Brunel, L.-C.; Wylde, R. J. openurl 
  Title A quasioptical transient electron spin resonance spectrometer operating at 120 and 240 GHz Type Journal Article
  Year 2005 Publication Rev. Sci. Instrum. Abbreviated Journal Rev. Sci. Instrum.  
  Volume (up) 76 Issue 7 Pages 074101 (1 to 8)  
  Keywords Schottky, noise temperature  
  Abstract A new multifrequency quasioptical electron paramagnetic resonance (EPR) spectrometer is described. The superheterodyne design with Schottky diode mixer/detectors enables fast detection with subnanosecond time resolution. Optical access makes it suitable for transient EPR (TR-EPR) at 120 and 240 GHz. These high frequencies allow for an accurate determination of small g-tensor anisotropies as are encountered in excited triplet states of organic molecules like porphyrins and fullerenes. The measured concentration sensitivity for continuous-wave (cw) EPR at 240 GHz and at room temperature without cavity is 1013 spins/cm3 (15 nM) for a 1 mT linewidth and a 1 Hz bandwidth. With a Fabry-Perot cavity and a sample volume of 30 nl, the sensitivity at 240 GHz corresponds to [approximate]3×109 spins for a 1 mT linewidth. The spectrometer's performance is illustrated with applications of transient EPR of excited triplet states of organic molecules, as well as cw EPR of nitroxide reference systems and a thin film of a colossal magnetoresistance material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Actually, noise spectral density is given (3e-19 W/Hz) Approved no  
  Call Number Serial 588  
Permanent link to this record
 

 
Author Hoevers, H. F. C.; Bento, A. C.; Bruijn, M. P.; Gottardi, L.; Korevaar, M. A. N.; Mels, W. A.; de Korte, P. A. J. openurl 
  Title Thermal fluctuation noise in a voltage biased superconducting transition edge thermometer Type Journal Article
  Year 2000 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.  
  Volume (up) 77 Issue 26 Pages 4421-4424  
  Keywords TES; bolometer; thermal fluctuation noise; TFN  
  Abstract The current noise at the output of a microcalorimeter with a voltage biased superconducting transition edge thermometer is studied in detail. In addition to the two well-known noise sources: thermal fluctuation noise from the heat link to the bath and Johnson noise from the resistive thermometer, a third noise source strongly correlated with the steepness of the thermometer is required to fit the measured noise spectra. Thermal fluctuation noise, originating in the thermometer itself, fully explains the additional noise. A simple model provides quantitative agreement between the observed and calculated noise spectra for all bias points in the superconducting transition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 759  
Permanent link to this record
 

 
Author Zhang, W.; Khosropanah, P.; Gao, J. R.; Kollberg, E. L.; Yngvesson, K. S.; Bansal, T.; Barends, R.; Klapwijk, T. M. openurl 
  Title Quantum noise in a terahertz hot electron bolometer mixer Type Journal Article
  Year 2010 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.  
  Volume (up) 96 Issue 11 Pages 111113-(1-3)  
  Keywords HEB mixer, quantum limit, quantum noise, vacuum box, THz, Terahertz  
  Abstract We have measured the noise temperature of a single, sensitive superconducting NbN hot electron bolometer (HEB) mixer in a frequency range from 1.6 to 5.3 THz, using a setup with all the key components in vacuum. By analyzing the measured receiver noise temperature using a quantum noise (QN) model for HEB mixers, we confirm the effect of QN. The QN is found to be responsible for about half of the receiver noise at the highest frequency in our measurements. The beta-factor (the quantum efficiency of the HEB) obtained experimentally agrees reasonably well with the calculated value.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 624  
Permanent link to this record
 

 
Author Deang, Jennifer; Du, Qiang; Gunzburger, Max D. openurl 
  Title Modeling and computation of random thermal fluctuations and material defects in the Ginzburg–Landau model for superconductivity Type Journal Article
  Year 2002 Publication J. Comp. Phys. Abbreviated Journal  
  Volume (up) 181 Issue 1 Pages 45-67  
  Keywords noise; superconductivity; finite element methods; fluctuations.  
  Abstract It is well known that thermal fluctuations and material impurities affect the motion of vortices in superconductors. These effects are modeled by variants of a time-dependent Ginzburg-Landau model containing either additive or multiplicative noise. Numerical computations are presented that illustrate the effects that noise has on the dynamics of vortex nucleation and vortex motion. For an additive noise model with relatively low variances, it is found that the vortices form a quasi-steady-state lattice in which the vortex core sizes remain roughly fixed but their positions vibrate. Two multiplicative noise models are considered. For one model having relatively long-range order, the sizes of the vortex cores vary in time and from one vortex to another. Finally, for the additive noise case, we show that as the variance of the noise tends to zero, solutions of the stochastic time-dependent Ginzburg-Landau equations converge to solutions of the corresponding equations with no noise.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 758  
Permanent link to this record
 

 
Author Maslennikov, S. url  openurl
  Title RF heating efficiency of the terahertz superconducting hot-electron bolometer Type Journal Article
  Year 2014 Publication arXiv Abbreviated Journal arXiv  
  Volume (up) 1404.5276 Issue Pages 1-4  
  Keywords superconducting hot-electron bolometer mixer, HEB, NbN, distributed model, HEB model, HEB mixer model, heat balance equa-tions, conversion gain, RF heating efficiency, noise temperature, simulation, Euler method  
  Abstract We report results of the numerical solution by the Euler method of the system of heat balance equations written in recurrent form for the superconducting hot-electron bolometer (HEB) embedded in an electrical circuit. By taking into account the dependence of the HEB resistance on the transport current we have been able to calculate rigorously the RF heating efficiency, absorbed local oscillator (LO) power and conversion gain of the HEB mixer. We show that the calculated conversion gai nis in excellent agreement with the experimental results, and that the substitution of the calculated RF heating efficiency and absorbed LO power into the expressions for the conversion gain and noise temperature given by the analytical small-signal model of the HEB yields excellent agreement with the corresponding measured values  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ atomics90 @ Serial 954  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: