|   | 
Details
   web
Records
Author Wu, Ming C.
Title Optoelectronic tweezers Type Journal Article
Year 2011 Publication Nature Photonics Abbreviated Journal Nature Photon
Volume (up) 5 Issue 6 Pages 322-324
Keywords fromIPMRAS
Abstract Using projected light patterns to form virtual electrodes on a photosensitive substrate, optoelectronic tweezers are able to grab and move micro- and nanoscale objects at will, facilitating applications far beyond biology and colloidal science.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 775
Permanent link to this record
 

 
Author Fazal, Furqan M.; Block, Steven M.
Title Optical tweezers study life under tension Type Journal Article
Year 2011 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume (up) 5 Issue 6 Pages 318-321
Keywords fromIPMRAS
Abstract Optical tweezers have become one of the primary weapons in the arsenal of biophysicists, and have revolutionized the new field of single-molecule biophysics. Today's techniques allow high-resolution experiments on biological macromolecules that were mere pipe dreams only a decade ago.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 776
Permanent link to this record
 

 
Author Gabay, Marc; Triscone, Jean-Marc
Title Superconductors: Terahertz superconducting switch Type Journal Article
Year 2011 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume (up) 5 Issue 8 Pages 447-449
Keywords fromIPMRAS
Abstract The use of terahertz pulses to 'gate' interlayer charge transport in a superconductor could lead to a variety of new and interesting applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 777
Permanent link to this record
 

 
Author Capmany, José; Gasulla, Ivana; Sales, Salvador
Title Microwave photonics: Harnessing slow light Type Journal Article
Year 2011 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume (up) 5 Issue 12 Pages 731-733
Keywords fromIPMRAS
Abstract Slow-light techniques originally conceived for buffering high-speed digital optical signals now look set to play an important role in providing broadband phase and true time delays for microwave signals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 778
Permanent link to this record
 

 
Author Mitin, Vladimir; Antipov, Andrei; Sergeev, Andrei; Vagidov, Nizami; Eason, David; Strasser, Gottfried
Title Quantum Dot Infrared Photodetectors: Photoresponse Enhancement Due to Potential Barriers Type Journal Article
Year 2011 Publication Nanoscale Research Letters Abbreviated Journal Nanoscale res lett
Volume (up) 6 Issue 1 Pages 6
Keywords Quantum dots; Infrared detectors; Photoresponse; Doping; Potential barriers; Capture processes
Abstract Potential barriers around quantum dots (QDs) play a key role in kinetics of photoelectrons. These barriers are always created, when electrons from dopants outside QDs fill the dots. Potential barriers suppress the capture processes of photoelectrons and increase the photoresponse. To directly investigate the effect of potential barriers on photoelectron kinetics, we fabricated several QD structures with different positions of dopants and various levels of doping. The potential barriers as a function of doping and dopant positions have been determined using nextnano3 software. We experimentally investigated the photoresponse to IR radiation as a function of the radiation frequency and voltage bias. We also measured the dark current in these QD structures. Our investigations show that the photoresponse increases ~30 times as the height of potential barriers changes from 30 to 130 meV.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 712
Permanent link to this record